Worksheet 8

Sections 306 and 310
 MATH 54

September 18, 2018

Exercise 1. Determine the values of s such that the system has a unique solution. Use Cramer's rule to describe the solutions in terms of s.

$$
\begin{gathered}
3 s x_{1}+5 x_{2}=3 \\
12 x_{1}+5 s x_{2}=2
\end{gathered}
$$

Exercise 2. Find the area of a parallelogram whose vertices are listed: (0,-2), (5,-3), (-3,1), $(2,0)$.

Exercise 3. Find the area of a triangle whose vertices are $(0,0),\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right)$

Exercise 4. Determine if the following sets are polynomials are subspaces of the space \mathbb{P}_{3} of polynomials in t of degree at most 3 .
a. All polynomials of the form $a+t^{2}$, where a is in \mathbb{R}.
b. All polynomials p in \mathbb{P}_{3} such that $p(0)=0$.

Exercise 5. Let W be the set of all vectors of the form $\left[\begin{array}{c}5 b+2 c \\ b \\ c\end{array}\right]$, where b, c can be any real numbers. Find \mathbf{u}, \mathbf{w} such that W is the span of \mathbf{u}, \mathbf{w}. Is W a subspace of \mathbb{R}^{3} ?
Exercise 6. Find an explicit description of $\operatorname{Nul}(\mathrm{A})$ by listing vectors that span the null space:

$$
\left[\begin{array}{ccccc}
1 & 6 & -4 & -3 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many entries do vectors in the null space have? How many entries to vectors in the column space have?

