Worksheet 7

Sections 306 and 310
 MATH 54

September 13, 2018

Exercise 1. Let T be a linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
5 & 10 & 3
\end{array}\right]
$$

Is T one-to-one? onto? Discuss what this means in your own words with your group.

Exercise 2. State the row operation shown below and describe how it affects the determinant.

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \rightarrow\left[\begin{array}{cc}
a+k c & b+k d \\
c & d
\end{array}\right]
$$

Actually compute the determinants, don't use Theorem 3.

Exercise 3. Find the determinant by row reduction to echelon form. (It is ok (and encouraged!) to use Theorem 3 for this exercise.

$$
\left|\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right|
$$

Exercise 4. Suppose that we already know that:

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=7
$$

Compute the following determinant:

$$
\left|\begin{array}{ccc}
-5 d+g & -5 e+h & -5 f+i \\
a & b & c \\
g & h & i
\end{array}\right|
$$

Exercise 5. Let $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$. Write $5 A$. Is $\operatorname{det}(5 A)=5 \operatorname{det}(A)$? Let A be a $n \times n$ matrix and let k be a scalar. Find a formula for $\operatorname{det}(k A)$ om ter,s $\mathrm{pf} k$ and $\operatorname{det}(A)$.

