Worksheet 7

Sections 306 and 310 MATH 54

September 13, 2018

Exercise 1. Let T be a linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 5 & 10 & 3 \end{bmatrix}.$$

Is T one-to-one? onto? Discuss what this means in your own words with your group.

Exercise 2. State the row operation shown below and describe how it affects the determinant.

$\begin{bmatrix} a \end{bmatrix}$	b	ζ.	a + kc	b + kd
c	d	\rightarrow		d

Actually compute the determinants, don't use Theorem 3.

Exercise 3. Find the determinant by row reduction to echelon form. (It is ok (and encouraged!) to use Theorem 3 for this exercise.

$$\begin{vmatrix} 3 & 3 & -3 \\ 3 & 4 & -4 \\ 2 & -3 & -5 \end{vmatrix}$$

Exercise 4. Suppose that we already know that:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7.$$

Compute the following determinant:

$$\begin{vmatrix} -5d+g & -5e+h & -5f+i \\ a & b & c \\ g & h & i \end{vmatrix}$$

Exercise 5. Let $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$. Write 5A. Is $\det(5A) = 5 \det(A)$? Let A be a $n \times n$ matrix and let k be a scalar. Find a formula for $\det(kA)$ om ter,s pf k and $\det(A)$.