Worksheet 6

Sections 306 and 310
 MATH 54

September 11, 2018

Exercise 1. Solve the system using matrix inverses!

$$
\begin{aligned}
& 8 x_{1}+5 x_{2}=-9 \\
& -7 x_{1}-5 x_{2}=11
\end{aligned}
$$

Exercise 2. Suppose $(B-C) D=0$, where B and C are $m \times n$ matrices and D is an invertible $n \times n$ matrix. show that $B=C$.

Exercise 3. Determine which of the matrices are invertible. Justify your answers, but try using as few calculations as possible :)

$$
\left[\begin{array}{cc}
-4 & 6 \\
6 & -9
\end{array}\right] \quad\left[\begin{array}{ccc}
-7 & 0 & 4 \\
3 & 0 & -1 \\
2 & 0 & 9
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 3 & 7 & 4 \\
0 & 5 & 9 & 6 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

Exercise 4. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?

Exercise 5. Compute the following determinant by cofactor expansion.
$\left|\begin{array}{cccc}3 & 0 & 0 & 0 \\ 2 & -2 & 0 & 0 \\ 2 & 6 & 0 & 3 \\ 3 & -8 & -3 & 4\end{array}\right|$

Exercise 6. Let A, B be $n \times n$ matrices. Show that if $A B$ is invertible, then so is A.

