Worksheet 5

Sections 306 and 310
 MATH 54

September 6, 2018

Exercise 1. Assume T is a linear transformation. Find the standard matrix of T.

- $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, and $T\left(\mathbf{e}_{\mathbf{1}}\right)=(1,3), T\left(\mathbf{e}_{\mathbf{2}}\right)=(4,-7), T\left(\mathbf{e}_{\mathbf{3}}\right)=(-4,5)$, where $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$, and $\mathbf{e}_{\mathbf{3}}$ are the columns of the 3×3 identity matrix.
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} - axis and then reflects points through the line $x_{1}=x_{2}$.
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2},-2 x_{1}+x_{3}, x_{1}\right)$.

As a group, choose one of these transformations and figure out if it is one-to-one and onto.

Exercise 2. If possible, compute each of $3 C-E, C B, E B$. If any of these computations are impossible, briefly explain why.

$$
B=\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] \quad E=\left[\begin{array}{c}
-5 \\
3
\end{array}\right]
$$

Exercise 3. If a matrix B is 5×3 and the product $A B$ is 2×3, what is the size of A ?

Exercise 4. How many rows does B have is $B C$ is a 3×4 matrix?

Exercise 5. Suppose the second column of B is all zeros. WHat can you say about the second column of $A B$?

Exercise 6. Find matrices A, B, C, such that $A B=A C$, yet $B \neq A$.

