Worksheet 4

Sections 306 and 310
 MATH 54

September 4, 2018

Exercise 1. Determine if each set of matrices is linearly independent.

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
5 \\
-8
\end{array}\right],\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-3 \\
9
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
343 \\
454 \\
55 \\
-45 \\
67
\end{array}\right]}
\end{gathered}
$$

Exercise 2. For which values of h are the following vectors linearly dependent? Justify your answer!

$$
\left[\begin{array}{c}
1 \\
5 \\
-3
\end{array}\right] \quad\left[\begin{array}{c}
2 \\
-9 \\
6
\end{array}\right] \quad\left[\begin{array}{c}
3 \\
h \\
-9
\end{array}\right]
$$

Exercise 3. Determine the possible row echelon forms of a 2×2 matrix with linearly dependent columns.

Exercise 4. For each pair T, \mathbf{b}, find a vector whose image under T is \mathbf{b}. Is this vector unique?

$$
T=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right]
$$

$$
T=\left[\begin{array}{ccc}
1 & -5 & -7 \\
-3 & 7 & 5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-2 \\
-2
\end{array}\right]
$$

Exercise 5. Describe geometrically what the following linear transformation T does. It may be helpful to plot a few points and their images!

$$
T=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right]
$$

Exercise 6. Let $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 8\end{array}\right]$ and $\mathbf{y}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{e}_{\mathbf{1}}$ to $\mathbf{y}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ to $\mathbf{y}_{\mathbf{2}}$. What is the image of $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$?

Exercise 7. Show that $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{2} \\ x_{1}\end{array}\right]$ is a linear transformation.

