Worksheet 3

Sections 306 and 310 MATH 54

August 30, 2018

Exercise 1. Do the following vectors span \mathbb{R}^3 ?

[0]	ΓΟ]	[4]
0	$\left -3\right $	-1
$\lfloor -2 \rfloor$	[8]	$\lfloor -5 \rfloor$

Exercise	2.	Do	the	following	vectors	span	$\mathbb{R}^4?$
				0		1	

$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$
$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$		0
		$\lfloor -1 \rfloor$

Exercise 3. Determine if the following systems have a nontrivial solution:

- $x_1 3x_2 + 7x_3 = 0$, $-2x_1 + x_2 4x_3 = 0$ $x_1 + 2x_2 + 9x_3 = 0$
- $-5x_1 + 7x_2 + 9x_3 = 0$, $x_1 2x_2 + 6x_3 = 0$

Exercise 4. Describe all solutions of $A\mathbf{x} = \mathbf{0}$, for the following matrices. Express your answers in parametric vector form.

$$A = \begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6 \end{bmatrix}$$

Exercise 5. Describe the solutions of the system given by the following augmented matrix. Express your answer in parametric vector form.

_

$$\begin{bmatrix} 1 & 3 & 1 & 1 \\ -4 & -9 & 2 & -1 \\ 0 & -3 & -6 & -3 \end{bmatrix}$$

Exercise 6. Let A be a 3×2 matrix with 2 pivot positions. Does $A\mathbf{x} = \mathbf{0}$ have a nontrivial solution? Does $A\mathbf{x} = \mathbf{b}$ have at least 1 solution for every \mathbf{b} in \mathbb{R}^2 ?