Worksheet 26

Sections 306 and 310
 MATH 54

Nov 27, 2018

Exercise 1. Find a general solution of the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ for the given matrix A . You can use the fact that the eigenvalues of A are $2,2+i$, and $2-i$.

$$
A=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]
$$

Exercise 2. For the coupled mass-spring system governed by (10) on page 536 of the book, assume $m_{1}=m_{2}=1 \mathrm{~kg}, k_{1}=k_{2}=k_{3}=1 \mathrm{~N} / \mathrm{m}$ and assume initially that $x_{1}(0)=0 \mathrm{~m}$, $x_{1}^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}, x_{2}(0)=2 \mathrm{~m}$ and $x_{2}^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$. Find the normal frequencies and solve the intitial value problem.

Exercise 3. Determine whether the given vector functions are linearly independent of linearly dependent on $(-\infty, \infty)$.
(a) Show that the Cauchy-Euler equation $a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0$ can be written as system

$$
t \mathrm{x}^{\prime}=A \mathrm{x}
$$

with a constant coefficient matrix A, by setting $x_{1}=y / t$ and $x_{2}=y^{\prime}$.
(b) Show that for $t>0$ any system of the form above has nontrivial solutions of the form $\mathbf{x}(t)=t^{r} \mathbf{u}$ if and only if r is an eigenvalue of A and u is a corresponding eigenvector.

