Worksheet 24

Sections 306 and 310
 MATH 54

Nov 13, 2018

Exercise 1. Write the given system in normal matrix form: $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{f}$.

$$
\begin{gathered}
x^{\prime}(t)=x+y+z \\
y^{\prime}(t)=2 x-y+3 z \\
z^{\prime}(t)=x+5 z+e^{5 t}
\end{gathered}
$$

Exercise 2. Rewrite the given equation as a first order system in normal form:

$$
y^{\prime \prime \prime}-y^{\prime}+y=\cos (t)
$$

Exercise 3. Determine whether the given vector functions are linearly independent of linearly dependent on $(-\infty, \infty)$.
(a) $e^{t}\left[\begin{array}{l}1 \\ 5\end{array}\right], e^{t}\left[\begin{array}{c}-3 \\ -15\end{array}\right]$
(b) $\left[\begin{array}{c}\sin (t) \\ \cos (t)\end{array}\right],\left[\begin{array}{l}\sin (2 t) \\ \cos (2 t)\end{array}\right]$

Exercise 4. The given vector functions are solutions to a system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Do they form a fundamental set? If so, find a fundamental matrix and five a general solution.

$$
\mathbf{x}_{\mathbf{1}}(t)=e^{-t}\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad \mathbf{x}_{\mathbf{2}}(t)=e^{4 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Exercise 5. Let $X(t)$ be the fundamental matrix for the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$. Show that $\mathbf{x}(t)=X(t) X^{-1}\left(t_{0}\right) \mathbf{x}_{\mathbf{0}}$ is the solution to the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}$, and $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{\mathbf{0}}$.

