Worksheet 21

Sections 306 and 310
 MATH 54

Nov 1, 2018

Exercise 1. Find a general solution to the given differential equations:
(a) $y^{\prime \prime}+y=0$
(b) $y^{\prime \prime}-10 y^{\prime}+26=0$
(c) $y^{\prime \prime}-4 y^{\prime}+7 y=0$

Exercise 2. To see the effect of changing the parameter b in the initial value problem $y^{\prime \prime}+b y^{\prime}+4 y=0 ; y(0)=1 ; y^{\prime}(0)=0$

Solve the problem for $b=5,4$, and 2 and sketch the solutions.

Exercise 3. Find a general solution to the following higher-order equation:

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}+3 y=0
$$

Exercise 4. Prove the sum of angles formula for the sine function by following these steps. Let x be a fixed constant.
(a) Let $f(t)=\sin (x+t)$. Show that $f^{\prime \prime}(t)+f(t)=0, f(0)=\sin x$, and $f^{\prime}(0)=\cos (x)$.
(b) Use the auxiliary techniqe to solve the initial value problem $y^{\prime \prime}+y=0, y(0)=\sin (x)$, and $y^{\prime}(0)=\cos (x)$.
(c) By uniqueness, the solution in part (b) is the same as $f(t)$ from part (a). Write this equality, this should be the standard sum of angles formula for $\sin (x+t)$.

