Worksheet 18

Sections 306 and 310 MATH 54

October 23, 2018

Exercise 1. Consider \mathbb{P}_2 with the following inner product:

 $\langle p,q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$

Let $p(t) = 3t - t^2$ and $q(t) = 3 + 2t^2$. Compute the following:

- (a) $\langle p,q \rangle$
- (b) ||p||, ||q||
- (c) $\operatorname{proj}_W q$, where $W = \operatorname{span}\{p\}$.

Exercise 2. Use the axioms of inner product spaces to prove the following: For any vector \mathbf{v} in an inner product space V,

$$\langle \mathbf{v}, \mathbf{0} \rangle = \langle \mathbf{0}, \mathbf{v} \rangle = 0$$

Exercise 3. True of false! Justify!

- (a) There are symmetric matrices that are not orthogonally diagonalizable.
- (b) An orthogonal matrix is always orthogonally diagonalizeable.
- (c) The dimension of the eigenspace is sometimes less than the multiplicity of the corresponding eigenvalue.
- (d) The dimension of an eigenspace of a symmetrix matrix is sometimes less than the multiplicity of the corresponding eigenvalue.

Exercise 4. The following matrix has eigenvalues $\lambda = -2, 7$. Orthongally diagonalize the matrix:

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Exercise 5. Use the Cauchy-Schwarz inequality to show that $\left(\frac{a+b}{2}\right)^2 \leq \frac{a^2+b^2}{2}$. HINT: Use the vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$