Worksheet 17

Sections 306 and 310
 MATH 54

October 18, 2018

Exercise 1. Find a least-squares solution of $A \mathbf{x}=\mathbf{b}$ by using the normal equations for $\hat{\mathbf{x}}$

$$
A=\left[\begin{array}{cc}
1 & 3 \\
1 & -1 \\
1 & 1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
5 \\
1 \\
0
\end{array}\right]
$$

Exercise 2. True and false! Justify your answers! A is $m \times n$ and \mathbf{b} is in \mathbb{R}^{m}.
(a) If \mathbf{b} is in the column space of A, then every solution of $A \mathbf{x}=\mathbf{b}$ is a least-squares solution.
(b) The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the point in the column space of A closest to b
(c) A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a list of weights that when, applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.

Exercise 3. Find the orthogaonal projection of \mathbf{b} onto $\mathrm{Col} A$ and use this to find a leastsquares solution of $A \mathbf{x}=\mathbf{b}$

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4 \\
1 & 2
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]
$$

Explain why this method would be more difficult for the matrix given in exercise 1 .

