Worksheet 17

Sections 306 and 310 MATH 54

October 18, 2018

Exercise 1. Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ by using the normal equations for $\hat{\mathbf{x}}$

	[1	3		$\left\lceil 5 \right\rceil$	
A =	1	-1	$,\mathbf{b}=$	$\begin{array}{c} 0\\ 1\\ 0\end{array}$	
	1	1		0	

Exercise 2. True and false! Justify your answers! A is $m \times n$ and b is in \mathbb{R}^m .

- (a) If **b** is in the column space of A, then every solution of $A\mathbf{x} = \mathbf{b}$ is a least-squares solution.
- (b) The least-squares solution of $A\mathbf{x} = \mathbf{b}$ is the point in the column space of A closest to \mathbf{b}
- (c) A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a list of weights that when, applied to the columns of A, produces the orthogonal projection of \mathbf{b} onto Col A.

Exercise 3. Find the orthogaonal projection of **b** onto Col A and use this to find a least-squares solution of $A\mathbf{x} = \mathbf{b}$

$$A = \begin{bmatrix} 1 & 2\\ -1 & 4\\ 1 & 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3\\ -1\\ 5 \end{bmatrix}$$

Explain why this method would be more difficult for the matrix given in exercise 1.