Worksheet 16

Sections 306 and 310 MATH 54

October 16, 2018

Exercise 1. Write \mathbf{y} as the sum of two orthogonal vectors, one in span{ \mathbf{u} } and one orthogonal to it.

$$\mathbf{y} = \begin{bmatrix} 2\\ 3 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 4\\ -3 \end{bmatrix}$$

Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

Exercise 2. True and false! Justify your answers!

- (a) If A is an $n \times n$ matrix with orthogonal columns, then it is invertible.
- (b) If a set $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$ then S is an orthnormal set.
- (c) If c is not 0, then the orthogaonl projection of \mathbf{y} onto a vector \mathbf{u} is the same as the orthogonal projection of \mathbf{y} onto $c\mathbf{u}$.

Exercise 3. Let W be the subspace spanned by the $\mathbf{v}'s$ and write \mathbf{y} as a sum of a vector in W and a vector orthogonal to W.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}$$

What is the closest point in W to \mathbf{y} ?

Exercise 4. Find an orthogonal basis for col(A).

$$A = \begin{bmatrix} -1 & 6 & 6\\ 3 & -8 & 3\\ 1 & -2 & 6\\ 1 & -4 & -3 \end{bmatrix}$$

Exercise 5. Without looking at the proof in the book, show that a set of nonzero orthogonal vectors is linearly independent.