Worksheet 15

Sections 306 and 310
 MATH 54

October 11, 2018

Exercise 1. Find a unit vector in the direction of the given vector. Draw a picture of what an orthogonal vector would look like.

$$
\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right]
$$

Exercise 3. True and false! Justify your answers!
(a) For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$.
(b) If \mathbf{v} is orthoganal to every vector in a subspace W, then \mathbf{v} is in W^{\perp}.
(c) If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
(d) For an $m \times n$ matrix A, vectors in nul A are orthogonal to vectors in row A.

Exercise 3. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthoganal basis for \mathbb{R}^{3}. Then express \mathbf{x} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right]
$$

Exercise 4. For what values of b is the following matrix diagonalizable?

$$
\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]
$$

