Worksheet 15

Sections 306 and 310 MATH 54

October 11, 2018

Exercise 1. Find a unit vector in the direction of the given vector. Draw a picture of what an orthogonal vector would look like.

 $\begin{bmatrix} -6\\4\\-3 \end{bmatrix}$

Exercise 3. True and false! Justify your answers!

- (a) For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.
- (b) If **v** is orthogonal to every vector in a subspace W, then **v** is in W^{\perp} .
- (c) If $||\mathbf{u}||^2 + ||\mathbf{v}||^2 = ||\mathbf{u} + \mathbf{v}||^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- (d) For an $m \times n$ matrix A, vectors in nul A are orthogonal to vectors in row A.

Exercise 3. Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form an orthogonal basis for \mathbb{R}^3 . Then express \mathbf{x} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

$$\mathbf{v}_1 = \begin{bmatrix} 3\\ -3\\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\ 2\\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\ 1\\ 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 5\\ -3\\ 1 \end{bmatrix}$$

Exercise 4. For what values of *b* is the following matrix diagonalizable?

 $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$