Worksheet 13

Sections 306 and 310
 MATH 54

October 3, 2018

Exercise 1. Mark each statement True or False. Justify each answer.
(a) If A, B are row equivalent, then they have the same eigenvalues.
(b) If A has n eigenvectors, A is diagonalizable.
(c) If A has n distinct eigenvalues, it is diagonalizable.

Exercise 2. Find the characteristic polynomials and eigenvalues of the following matrices:

$$
\left[\begin{array}{cc}
7 & -2 \\
2 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
5 & 3 \\
-4 & 4
\end{array}\right]
$$

Exercise 3. (a) As a group, discuss why it is useful to be able to diagonalize a matrix!
(b) If possible, diagonalize the following matrix:

$$
\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]
$$

Exercise 4. The eigenvalues of A are 2 and 8. Use this information to diagonalize A :

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right]
$$

Exercise 5. Do A and A^{T} have the same characteristic polynomial?

