Worksheet 12

Sections 306 and 310
 MATH 54

October 2, 2018

Exercise 1. Mark each statement True or False. Justify each answer.
(a) The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are linearly independent.
(b) If $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$, and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right\}$, then row reduction of $\left[\mathbf{c}_{\mathbf{1}} c_{2} b_{1} b_{2}\right]$ to $[I P]$ yields a matrix P that satisfies $[\mathbf{x}]_{\mathcal{B}}=P[\mathbf{x}]_{C}$ for all \mathbf{x} in V.

Exercise 2. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the bases $\mathcal{B}=\left\{1-3 t^{2}, 2+\right.$ $\left.t-5 t^{2}, 1+2 t\right\}$ to the standard basis. Then write t_{2} as a linear combination of the polynomials in \mathcal{B}.

Exercise 3. (a) As a group, discuss the definitions of eigenvector and eigenvalue. Draw pictures!
(b) Is $\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $\left[\begin{array}{lll}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$? If so, find the eigenvalue.
(c) Is $\lambda=3$ an eigenvalue of $\left[\begin{array}{ccc}1 & 2 & 2 \\ 3 & -2 & 1 \\ 0 & 1 & 1\end{array}\right]$.

Exercise 4. Find a basis for the eigenspace corresponding to each listed eigenvalue.

$$
A=\left[\begin{array}{cc}
10 & -9 \\
4 & -2
\end{array}\right] \quad \lambda=4
$$

Exercise 5. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.

Exercise 6. Find the characteristic polynomial and the eigenvalues for the matrix.

$$
\left[\begin{array}{ccc}
5 & -2 & 3 \\
0 & 1 & 0 \\
6 & 7 & -2
\end{array}\right]
$$

