Worksheet 11

Sections 306 and 310
 MATH 54

September 27, 2018
Exercise 1. If a 6×3 matrix has rank 3 , find $\operatorname{dim} \operatorname{Nul} A$, dim Row A, and rank A^{T}.

Exercise 2. If A is a 6×4 matrix, what is the smallest possible dimension of Nul A ?

Exercise 3. Let $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \mathbf{d}_{\mathbf{3}}\right\}$ be bases for a vector space V, and let $P=\left[\left[\mathbf{d}_{\mathbf{1}}\right]_{\mathcal{A}},\left[\mathbf{d}_{\mathbf{2}}\right]_{\mathcal{A}},\left[\mathbf{d}_{\mathbf{3}}\right]_{\mathcal{A}}\right]$. Which of the following equations is true for all \mathbf{x} in V ?
(a) $[\mathbf{x}]_{\mathcal{A}}=P[\mathbf{x}]_{\mathcal{D}}$
(b) $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$

Exercise 4. Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right\}$ be bases for \mathbb{R}^{2}. Compute the change of coordinate matrix from \mathcal{C} to \mathcal{B}.

$$
b_{1}=\left[\begin{array}{l}
7 \\
5
\end{array}\right], b_{2}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right], c_{1}=\left[\begin{array}{c}
1 \\
-5
\end{array}\right], c_{2}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]
$$

