Worksheet 10

Sections 306 and 310 MATH 54

September 25, 2018

Exercise 1. Assume that A is row equivalent to B. Find bases for nul A and col A.

A =	[1	2	-5	11	3]		Γ1	2	0	4	5]
	2	4	-5	15	2	D	0	0	5	-7	8
	1	2	0	4	5	D =	0	0	0	0	-9
	3	6	-5	19	-2		0	0	0	0	0

Exercise 2. True or false? Give brief justifications.

- (a) A linearly independent set in a subspace H is a basis for H.
- (b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
- (c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of col A.

Exercise 3. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\beta}$ and the given basis β .

$$\beta = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\} \qquad \qquad [\mathbf{x}]_{\beta} = \begin{bmatrix} 8\\-5 \end{bmatrix}$$

Exercise 4. Find the coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} relative to the given basis β .

$\beta = \langle$	$\left\{ \begin{bmatrix} 1\\-3 \end{bmatrix}, \begin{bmatrix} 2\\-5 \end{bmatrix} \right\}$	$\mathbf{x} = \begin{bmatrix} -2\\ 1 \end{bmatrix}$
-------------------	---	---

Exercise 5. Find a basis of the following vector spaces. What is the dimension of each?

$$\left\{ \begin{bmatrix} 4s\\ -3s\\ -t \end{bmatrix} : s,t \text{ in } \mathbb{R} \right\} \qquad \{(a,b,c,d) : a-3b+c=0\}$$

Exercise 6. Let $T: V \to W$ be a linear transformation. Shot that if $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is linearly dependent V, then $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_p})\}$ is linearly dependent in W. Use this to show that if $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_p})\}$ is linearly independent in W, then $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is linearly independent in V.