Worksheet 1

Sections 306 and 310 MATH 54

August 23, 2018

Exercise 1. Which of the following matrices are in row echelon form? For each matrix, write a corresponding system of linear equations.

[1	0	0	2]		0	1	0	1	1	0	0	4]
0	1	0	3		1	3	2	2	0	0	3	5
0	0	1	0		0	0	1	3	0	0	0	6

Exercise 2. The following three matrices are already in row echelon form. Which represent a consistent system of equations?

$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$	1 0 0	1 2 0	0 0 0	1 2 3 0	1 2 3	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	
	0	0	0	0	4	Lo	0	0	ΟJ	

Exercise 3. Put the following in row echelon form.

Γ1	4	Ο	77	1	-7	0	6	5
	4	0	10	0	0	1	-2	-3
[2	1	0	10]	0	0	0	0	0

Exercise 4. Describe the possible echelon forms of a nonzero 3×2 matrix. Use the symbols \Box , *, and 0, where \Box means a nonzero number and * means any number.

Exercise 5. Determine the values of h such that the matrix is the augmented matrix of a consistent linear system.

$$\begin{bmatrix} 3 & 6 & 6 \\ 1 & h & 4 \end{bmatrix}$$