Worksheet 9

Sections 207 and 219 MATH 54

Febrary 21, 2018

Exercise 1. Determine if the following sets of polynomials are subspaces of the space \mathbb{P}_3 of polynomials in t of degree at most 3.

- a. All polymonials in \mathbb{P}_3 of the form $p(t) = at^2$, where a is in \mathbb{R} .
- b. All polynomials in \mathbb{P}_3 of the form $a + t^2$, where a is in \mathbb{R} .
- c. All polynomials p in \mathbb{P}_3 such that p(0) = 0.

Exercise 2. Let *W* be the union of the first and third quadrants of the plane. That is: let $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : xy \ge 0 \right\}.$

- (a) If \mathbf{u} is in W and c is any scalar, is $c\mathbf{u}$ in W? Why?
- (b) Can you find specific vectors \mathbf{u} and \mathbf{v} in W such that their sum is not in W.
- (c) Is W a vector space?

Exercise 3. For each of the following sets, either use an appropriate theorem to show that the given set is a vector space, or find an specific example to the contrary.

$$\begin{cases} \begin{bmatrix} r\\s\\t \end{bmatrix} : 5r - 1 = s + 2t \\ \\ \begin{cases} \begin{bmatrix} a\\b\\c\\d \end{bmatrix} : a + 3b = c\\b + c + a = d \\ \end{cases}$$

Exercise 4. Let $A = \begin{bmatrix} -8 & -2 & -9\\6 & 4 & 8\\4 & 0 & 4 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}$. Is \mathbf{w} in Col A? Is it in Nul A?

Exercise 5. True or false? Justify each answer:

(a) A null space is a vector space.

- (b) The column space of an $m \times n$ matrix is in \mathbb{R}^m .
- (c) Col A is the set of all solutions of $A\mathbf{x} = \mathbf{b}$.
- (d) Nul A is the kernel of the mapping $\mathbf{x} \mapsto A\mathbf{x}$.
- (e) The range of a linear transformation is a vector space.