Worksheet 9

Sections 207 and 219
 MATH 54

Febrary 21, 2018

Exercise 1. Determine if the following sets of polynomials are subspaces of the space \mathbb{P}_{3} of polynomials in t of degree at most 3 .
a. All polymonials in \mathbb{P}_{3} of the form $p(t)=a t^{2}$, where a is in \mathbb{R}.
b. All polynomials in \mathbb{P}_{3} of the form $a+t^{2}$, where a is in \mathbb{R}.
c. All polynomials p in \mathbb{P}_{3} such that $p(0)=0$.

Exercise 2. Let W be the union of the first and third quadrants of the plane. That is: let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x y \geq 0\right\}$.
(a) If \mathbf{u} is in W and c is any scalar, is $c \mathbf{u}$ in W ? Why?
(b) Can you find specific vectors \mathbf{u} and \mathbf{v} in W such that their sum is not in W.
(c) Is W a vector space?

Exercise 3. For each of the following sets, either use an appropriate theorem to show that the given set is a vector space, or find an specific example to the contrary.

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
r \\
s \\
t
\end{array}\right]: 5 r-1=s+2 t\right\} \\
& \left\{\begin{array}{l}
\left.\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]: \begin{array}{c}
a+3 b=c \\
b+c+a=d
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

Exercise 4. Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. Is \mathbf{w} in Col A? Is it in Nul A?
Exercise 5. True or false? Justify each answer:
(a) A null space is a vector space.
(b) The column space of an $m \times n$ matrix is in \mathbb{R}^{m}.
(c) $\operatorname{Col} A$ is the set of all solutions of $A \mathbf{x}=\mathbf{b}$.
(d) $\operatorname{Nul} A$ is the kernel of the mapping $\mathbf{x} \mapsto A \mathbf{x}$.
(e) The range of a linear transformation is a vector space.

