Worksheet 8

Sections 207 and 219
 MATH 54

February 19, 2018
Exercise 1. Determine the values of s such that the system has a unique solution. Use Cramer's rule to describe the solutions in terms of s.

$$
\begin{gathered}
3 s x_{1}+5 x_{2}=3 \\
12 x_{1}+5 s x_{2}=2
\end{gathered}
$$

Exercise 2. Compute the adjugate of the given matrix, and use theorm 8 to give the inverse of the matrix:

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
-2 & -2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Exercise 3. Suppose that all the entries inf A are integes. Are the entries in A^{-1} necesarily integers? What if $\operatorname{det}(A)=1$? Explain.

Exercise 4. Find the volume of the parallelepiped with one vertix at the origen and adjacent vertices at $(1,3,0),(-2,0,2)$, and ($-1,3,-1$).

Exercise 5. Let S be the parallelogram determined one vertex at the origin and adjacent vertices at $(-2,3)$ and $(-2,5)$. Let $A=\left[\begin{array}{cc}6 & -3 \\ -3 & 2\end{array}\right]$. Compute the area of the image of S under the mapping $\mathbf{x} \mapsto A \mathbf{x}$. Try computing in two different ways!.

Exercise 6. Find a basis of $\operatorname{Nul}(\mathrm{A})$ by listing vectors that span the null space:

$$
\left[\begin{array}{ccccc}
1 & 6 & -4 & -3 & 1 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

How many entries do vectors in the null space have? How many entries to vectors in the column space have? What is the dimension of each space?

