Worksheet 7

Sections 207 and 219
 MATH 54

February 12, 2019
Exercise 1. Compute the determinant in your favorite way.

$$
\left|\begin{array}{ccc}
3 & 3 & -3 \\
3 & 4 & -4 \\
2 & -3 & -5
\end{array}\right|
$$

Exercise 2. Suppose that we already know that:

$$
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=7 .
$$

Compute the following determinant:

$$
\left|\begin{array}{ccc}
-5 d+g & -5 e+h & -5 f+i \\
a & b & c \\
g & h & i
\end{array}\right|
$$

Exercise 3. Determine the values of s such that the system has a unique solution. Use Cramer's rule to describe the solutions in terms of s.

$$
\begin{gathered}
3 s x_{1}+5 x_{2}=3 \\
12 x_{1}+5 s x_{2}=2
\end{gathered}
$$

Exercise 4. Find the area of a parallelogram whose vertices are listed: $(0,-2),(5,-3),(-3,1)$, (2,0).
Exercise 5. Find the area of a triangle whose vertices are $(0,0),\left(v_{1}, v_{2}\right),\left(w_{1}, w_{2}\right)$
Exercise 6. If A is a 3×4 matrix, what is the smallest possible dimension of nul A ?
Exercise 7. Let $A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]$. Write $5 A$. Is $\operatorname{det}(5 A)=5 \operatorname{det}(A)$? Let A be a $n \times n$ matrix and let k be a scalar. Find a formula for $\operatorname{det}(k A)$ in terms of k and $\operatorname{det}(A)$.

