Worksheet 6

Sections 207 and 219
 MATH 54

February 7, 2019
Exercise 1. Let A be an $n \times n$ matrix. Suppose the equation $A \mathbf{x}=\mathbf{b}$ has more than one solution for some \mathbf{b} in \mathbb{R}^{n}. Can the columns of A span \mathbb{R}^{n} ?

Proof. No. We use the invertible matrix theorem, on page 114 (thm. 8) If an $n \times n$ matrix has more than one solution to $A \mathbf{x}=\mathbf{b}$ for some \mathbf{b}, then A cannot be invertible. If a square matrix is not invertible, then its columns cannot span \mathbb{R}^{n}.

Exercise 2. Determine which of the matrices are invertible. Justify your answers, but try using as few calculations as possible :)

$$
\left[\begin{array}{cc}
-4 & 6 \\
6 & -9
\end{array}\right] \quad\left[\begin{array}{ccc}
-7 & 0 & 4 \\
3 & 0 & -1 \\
2 & 0 & 9
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 3 & 7 & 4 \\
0 & 5 & 9 & 6 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

Exercise 3. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?
It is nat possible.
By pat (h) of The. 8 or age 114,

- $-5 * 5$ matrix is invertible if and inly if
span \mathbb{R}^{5}.

Exercise 4. Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. Is \mathbf{w} in $\operatorname{Col} A$? Is it in Jul A?

Exercise 5. Determine which of the following sets are bases for \mathbb{R}^{3}. Justify your answers.

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
-7 \\
5 \\
4
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]\left[\begin{array}{c}
-4 \\
-5 \\
6
\end{array}\right]}
\end{gathered}
$$

Discuss with your group: Do you think that a set of two vectors can form a basis for \mathbb{R}^{3} ? Why or why not? (We will discuss the idea of dimension soon, get excited!!)

$$
\begin{aligned}
& \text { (o). Not a bari! Not liseorly inseparkent. } \\
& \text { (b) A basie. We can rowritues the matrix }\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & -5 & 5 \\
1 & 2 & 4
\end{array}\right] \\
& \text { to the identity }\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {. By the invertible patrols theorem, } \\
& \begin{array}{l}
\text { this has lin ind convenes, and these columns span } \mathbb{R}^{3} \text {. } \\
\text { Not obaris. The vectors do not span } \mathbb{R}^{3} \text {. To see this, we look at }\left[\begin{array}{cc}
1 & - \\
2 & -5 \\
-3 & 6
\end{array}\right] \vec{x}=\vec{b} \text {. }
\end{array} \\
& \text { (c). Not a bars). The vectors do not upon } \mathbb{R}^{3} \text {. } \\
& {\left[\begin{array}{ccc}
1 & -4 & b_{1} \\
2 & -5 & b_{1} \\
-3 & 6 & 1 b_{1}
\end{array}\right] \text {. rove reduce, to }\left[\begin{array}{lll}
1 & 0 & c_{1} \\
0 & 1 & c_{4} \\
0 & 0 & c_{j}
\end{array}\right] \text { which ic not alwamp }} \\
& \begin{array}{l}
\text { It tubes ont that all poses of } \mathbb{R}^{\prime} \text { hare } 3 \text { vectors, ven } \\
\text { will talk about }
\end{array}
\end{aligned}
$$

Exercise 6. Assume that A is row equivalent to B. Find bases for nub A and $\operatorname{col} A$.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & 3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & 3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
\boldsymbol{y} & 4 x & 4 x \\
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & \frac{-9}{4} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Bul A : By definition, nul A is the set of solutions to $A \vec{x}=\overrightarrow{0}$. We look at the angmente'
matrix $\left[\begin{array}{ccccc}1 & 2 & -5 & 11 & 3\end{array} 0 \begin{array}{lllll}1 & 2 & 0 & 4 & 5\end{array}\right] \quad\left[\begin{array}{llll}1 & 2 & 4 & 0\end{array}\right]$ Putting the solution $\operatorname{matrix}\left[\begin{array}{ccccc}2 & 4 & -5 & 16 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2\end{array} 0 \sim\left[\begin{array}{ccccc}0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{ccccc}0 & 0 & -7 & 0 & 0 \\ 0 & 5 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]\right.$ in
col A : By definition, col A is the span of the column of A. A basis of col A is given by the pivot columns of A. Free B, we see that the 1 stases, and sta column ar pivot colymel. So a basis is
Exercise 2. True or false? Give brief justifications.

(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a the lir form basis of V.
(c) If B is an echelon form o matrix A, the pivot columns of B for a basis of A.

Exercise 7. True or false? Give brief justifications.
(a) A linearly independent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
(c) If B is an echelon form of a matrix A, the pivot columns of B form a basis of $\operatorname{col} A$.
(a) False. To be a basis, the sect also has to span H. For example, $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$ is a linearly independent set, but it is not a basie of \mathbb{R}^{3} since it doesn't span \mathbb{R}^{3}.
(b) True. Sec the sponving set theorem.
(C) False, B tells yon which of the columns are pinot columns, but to find aboiis of the coven space you need to choose the pivot columns of the origind matrix A.

