Worksheet 6

Sections 207 and 219 MATH 54

February 7, 2019

Exercise 1. Let A be an $n \times n$ matrix. Suppose the equation $A\mathbf{x} = \mathbf{b}$ has more than one solution for some **b** in \mathbb{R}^n . Can the columns of A span \mathbb{R}^n ?

Proof. No. We use the invertible matrix theorem, on page 114 (thm. 8) If an $n \times n$ matrix has more than one solution to $A\mathbf{x} = \mathbf{b}$ for some \mathbf{b} , then A cannot be invertible. If a square matrix is not invertible, then its columns cannot span \mathbb{R}^n .

Exercise 2. Determine which of the matrices are invertible. Justify your answers, but try using as few calculations as possible :)

г.

$$\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix} \qquad \begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$

$$\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix} \begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix} \begin{bmatrix} 1 & 3 & 7 & 4 \\ 3 & 5 & 9 & 6 \\ 8 & 0 & 2 & 8 \\ 3 & 0 & 0 & 10 \end{bmatrix}$$
Not invertible!
The determinant
is $(4)(-9) - 6 \cdot 6$
= O .
See Than 4 on
proce 173.

$$\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$$
Not invertible!
There is a column
of all O's, so
the columns
do not from
a lin. ind.
See part (c)
of Than B
on proge 114.
This is already in
nor-echelon form, and
we can see there are
4 pivot positions.
See part (c) of
Than 8 on proge 114.
This is already in
Not invertible!
This is already in
Not can see there are
the columns
of all 0.
See part (c) of
Than 8 on proge 114.

Exercise 3. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^5 ? Why or why not?

It is not possible. By part (h) of The. 8 on page 114, a- 5+5 natrix is invortible if and only if its columns span IR5

Exercise 4. Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$. Is \mathbf{w} in Col A? Is it in Nul A?
To check if \vec{w} is in col A, we check if $A\vec{x} = \vec{w}$ by a solution:
We can do this by reducing the following degree degree matrix.
 $\begin{bmatrix} 1 & 2 & -2 & -2 \\ -2 & -2 & 2 \\ 4 & 0 & 4 & -1 \end{bmatrix}$ (Echard $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ This is not interview base for \mathbf{B}^3 busiles upon a power of the following the following the following degree degree for \mathbf{B}^3 busiles upon a power of the following the following

Exercise 5. Determine which of the following sets are bases for \mathbb{R}^3 . Justify your answers.

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
$$\begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\2 \end{bmatrix}, \begin{bmatrix} -7\\5\\4 \end{bmatrix}$$
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix} \begin{bmatrix} -4\\-5\\6 \end{bmatrix}$$

Discuss with your group: Do you think that a set of two vectors can form a basis for \mathbb{R}^3 ? Why or why not? (We will discuss the idea of dimension soon, get excited!!)

Exercise 6. Assume that A is row equivalent to B. Find bases for nul A and col A.

$$A = \begin{bmatrix} 1 & 2 & -5 & 11 & 3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & -5 & 11 & 3 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & (5) & -7 & 8 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and A'. By definition, null A is the set of solution, to $AX = \vec{O}$. We look of the angenetic metric Vietor form $\begin{bmatrix} 1 & 2 & -5 & 11 & 3 \\ 2 & 4 & -5 & 19 & -2 \end{bmatrix} \qquad \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
col A'. By definition, col A is the spon of the column of A. A boxin form $\begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 2 & 5 & -5 & 19 & -2 \end{bmatrix} \qquad \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
event A'. By definition, col A is the spon of the column of A. A boxin form $\begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
Exercise 2. True or false? Give brief justifications.
(a) A linearly independent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
(c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of col A.
(c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of col A.

Exercise 7. True or false? Give brief justifications.

- (a) A linearly independent set in a subspace H is a basis for H.
- (b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
- (c) If B is an echelon form of a matrix A, the pivot columns of B form a basis of col A.