Worksheet 6

Sections 207 and 219
 MATH 54

February 7, 2019
Exercise 1. Let A be an $n \times n$ matrix. Suppose the equation $A \mathbf{x}=\mathbf{b}$ has more than one solution for some \mathbf{b} in \mathbb{R}^{n}. Can the columns of A span \mathbb{R}^{n} ?
Exercise 2. Determine which of the matrices are invertible. Justify your answers, but try using as few calculations as possible :)

$$
\left[\begin{array}{cc}
-4 & 6 \\
6 & -9
\end{array}\right] \quad\left[\begin{array}{ccc}
-7 & 0 & 4 \\
3 & 0 & -1 \\
2 & 0 & 9
\end{array}\right] \quad\left[\begin{array}{cccc}
1 & 3 & 7 & 4 \\
0 & 5 & 9 & 6 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

Exercise 3. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ? Why or why not?
Exercise 4. Let $A=\left[\begin{array}{ccc}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. Is \mathbf{w} in Col A? Is it in Nul A?
Exercise 5. Determine which of the following sets are bases for \mathbb{R}^{3}. Justify your answers.

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right],\left[\begin{array}{c}
-7 \\
5 \\
4
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right]\left[\begin{array}{c}
-4 \\
-5 \\
6
\end{array}\right]}
\end{gathered}
$$

Discuss with your group: Do you think that a set of two vectors can form a basis for \mathbb{R}^{3} ?
Why or why not? (We will discuss the idea of dimension soon, get excited!!)
Exercise 6. Assume that A is row equivalent to B. Find bases for nul A and $\operatorname{col} A$.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & 3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 7. True or false? Give brief justifications.
(a) A linearly independent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
(c) If B is an echelon form of a matrix A, the pivot columns of B form a basis of $\operatorname{col} A$.

