Worksheet 6

Sections 207 and 219 MATH 54

February 7, 2019

Exercise 1. Let A be an $n \times n$ matrix. Suppose the equation $A\mathbf{x} = \mathbf{b}$ has more than one solution for some \mathbf{b} in \mathbb{R}^n . Can the columns of A span \mathbb{R}^n ?

Exercise 2. Determine which of the matrices are invertible. Justify your answers, but try using as few calculations as possible :)

$$\begin{bmatrix} -4 & 6 \\ 6 & -9 \end{bmatrix} \qquad \begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix} \qquad \begin{bmatrix} 1 & 3 & 7 & 4 \\ 0 & 5 & 9 & 6 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 10 \end{bmatrix}$$

Exercise 3. Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^5 ? Why or why not?

Exercise 4. Let $A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$. Is \mathbf{w} in Col A? Is it in Nul A?

Exercise 5. Determine which of the following sets are bases for \mathbb{R}^3 . Justify your answers.

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$
$$\begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-3\\2 \end{bmatrix}, \begin{bmatrix} -7\\5\\4 \end{bmatrix}$$
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix} \begin{bmatrix} -4\\-5\\6 \end{bmatrix}$$

Discuss with your group: Do you think that a set of two vectors can form a basis for \mathbb{R}^3 ? Why or why not? (We will discuss the idea of dimension soon, get excited!!)

Exercise 6. Assume that A is row equivalent to B. Find bases for nul A and col A.

A =	[1	2	-5	11	3]	Γ	1	2	0	4	5]
	2	4	-5	15	2	D	0	0	5	-7	8
	1	2	0	4	5	B =	0	0	0	0	-9
	3	6	-5	19	-2		0	0	0	0	0

Exercise 7. True or false? Give brief justifications.

- (a) A linearly independent set in a subspace H is a basis for H.
- (b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
- (c) If B is an echelon form of a matrix A, the pivot columns of B form a basis of col A.