Worksheet 5

Sections 207 and 219
 MATH 54

February 5, 2019

Exercise 1. Show that if the columns of B are linearly dependent, then so are the columns of $A B$.

Exercise 2. Find matrices A, B, C, such that $A B=A C$, yet $B \neq C$.
Exercise 3. Solve the system using matrix inverses!

$$
\begin{aligned}
& 8 x_{1}+5 x_{2}=-9 \\
& -7 x_{1}-5 x_{2}=11
\end{aligned}
$$

Exercise 4. Suppose $(B-C) D=0$, where B and C are $m \times n$ matrices and D is an invertible $n \times n$ matrix. show that $B=C$. Is this necesarily true if D is not invertible?

Exercise 5. Explain why the columns of an $n \times n$ matrix A span \mathbb{R}^{n} when A is invertible.
Exercise 6. In this exercise, we prove that the inverse of $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ exists if and only if $a d-b c \neq 0$. In the case that it does exist, $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
(a) Show that if $a d-b c=0$, then the equation for $A \mathbf{x}=\mathbf{0}$ has more than one solution. Conclude that then A must not be invertible.
(b) Show that if $a d-b c \neq 0$, then the formula holds.

