Worksheet 4

Sections 207 and 219 MATH 54

January 31, 2019

Exercise 1. For each pair A, **b**, let T be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$. For each, find a vector whose image under T is **b**. Is this vector unique?

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -2 & 1 & 6 \\ 3 & -2 & -5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -1 \\ 7 \\ -3 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 & -5 & -7 \\ -3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
Another way to phrace this question is. Find an \mathbf{X} such that $\mathbf{T}\mathbf{X} = \mathbf{b}$.
Is this \mathbf{X} the only solution to the matrix equation?".
The augmented matrix of $\mathbf{T}\mathbf{X} = \mathbf{b}$ is the augmented matrix of $\mathbf{T}\mathbf{X} = \mathbf{b}^{\dagger}$.

$$\begin{bmatrix} 1 & 0 & -2 & -1 \\ -2 & 1 & 4 & -7 \\ -2 & 1 & 4 & -7 \\ -2 & 1 & 4 & -7 \\ -2 & -2 & -1 \\ -2 & 1 & 4 & -7 \\ -2 & -2 & -1 \\ -2 & 1 & 4 & -7 \\ -2 & -2 & -1 \\ -2 & -2 & -3 \\ -2 & -5 & -3 \end{bmatrix} \xrightarrow{2k_1k_2 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & -2 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & -2 & -1 \\ 0 & -2 & -1 \\ -2 & -2 & -5 \\ 0 & 0 & 5 & 10 \end{bmatrix} \xrightarrow{4k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_1k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 & -2 & -1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{2k_3k_3 \to 2k_3} \begin{bmatrix} 1 & 0 &$$

Exercise 2. Describe geometrically what the following linear transformation T does. It may be helpful to plot a few points and their images!

$$T = \begin{bmatrix} 0.5 & 0\\ 0 & 1 \end{bmatrix}$$

Note that
$$T([X_1]) = \begin{bmatrix} s & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} s \\ x_2 \end{bmatrix}$$

So T contracts the first coordinate of a point by $\frac{1}{2}$,
and preserves the second coordinate.

Exercise 3. Let $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y_1} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}$ and $\mathbf{y_2} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation that maps $\mathbf{e_1}$ to $\mathbf{y_1}$ and $\mathbf{e_2}$ to $\mathbf{y_2}$. What is the image of $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$? We know that $T(\lfloor t_0 \rfloor) = \begin{bmatrix} t_0 \\ 8 \end{bmatrix}$, $T(\lfloor 0 \rfloor) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$. $f(\lfloor x_1 \rfloor) = \begin{bmatrix} t_0 \\ x_1 \end{bmatrix} = T(\lfloor x_1 \lfloor t_0 \rfloor + x_2 \lfloor t_1 \rfloor) = \begin{bmatrix} t_0 \\ 8 \end{bmatrix}$, $T(\lfloor 0 \rfloor) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$.

Exercise 4. Show that $T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2\\ x_1 \end{bmatrix}$ is a linear transformation.

In order to show that T is a linear transformation
we need to show that
$$T(a\bar{u}+b\bar{v}) = aT(\bar{u})+bT(\bar{v})$$
 for any
 \bar{u},\bar{v} in $[\bar{k}_{1}^{2} - a_{1}b$ in $\bar{k}_{1}a_{1}b$ in $\bar{k}_{2}a_{1}$.
Let $\bar{u} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \quad \bar{v} = \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}$. Then:
 $T(a\bar{u} + b\bar{u}) = T(a\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + b\begin{bmatrix} y_{1} \\ y_{3} \end{bmatrix}) = T(\begin{bmatrix} ax_{1}+by_{1} \\ ax_{2}+by_{2} \end{bmatrix}) =$
 $\begin{bmatrix} ax_{2}+by_{2} \\ ax_{1}+bx_{1} \end{bmatrix} = a\begin{bmatrix} x_{2} \\ x_{1} \end{bmatrix} + b\begin{bmatrix} y_{2} \\ y_{1} \end{bmatrix} = aT(\begin{bmatrix} x_{1} \\ y_{2} \end{bmatrix}) + bT(\begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}) =$
 $aT(\bar{v}) + bT(\bar{v}), \quad as desired.$
So T is indeed a linear transformation.
4

Exercise 5. Assume T is a linear transformation. Find the standard matrix of T.

- $T : \mathbb{R}^3 \to \mathbb{R}^2$, and $T(\mathbf{e_1}) = (1,3)$, $T(\mathbf{e_2}) = (4,-7)$, $T(\mathbf{e_3}) = (-4,5)$, where $\mathbf{e_1}$, $\mathbf{e_2}$, and $\mathbf{e_3}$ are the columns of the 3×3 identity matrix.
- $T: \mathbb{R}^2 \to \mathbb{R}^2$ first reflects points through the horizontal x_1 axis and then reflects points through the line $x_1 = x_2$.
- $T : \mathbb{R}^2 \to \mathbb{R}^3$ and $T(x_1, x_2) = (x_1 x_2, -2x_1 + x_2, x_1).$

As a group, choose one of these transformations and figure out if it is one-to-one and onto.

• Since
$$T(\vec{e}_{1}) = (1|3|)$$
 $T(\vec{e}_{2}) = (4,7)$, $T(\vec{e}_{3}) = (-4,5)$, the standard metric $A = \left[T(\vec{e}_{1}) \ T(\vec{e}_{2}) \ T(\vec{e}_{3})\right] = \left[\begin{matrix} 1 & 4 & -4 \\ 3 & -7 & 5\end{matrix}\right]$
•. We first compute $T(\vec{e}_{1})$ using the following picture:
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
•. We first compute $T(\vec{e}_{1})$ using the following picture:
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
•. We now compute $T(\vec{e}_{1})$ using the following picture:
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
•. We now compute $T(\vec{e}_{3})$ using the following picture:
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 \\ 3 & -7 & 5\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & -7 & 1\\ 1 & 0\end{matrix}\right]$
 $\begin{pmatrix} 1 & 2 & -7 & -7 &$