Worksheet 4

Sections 207 and 219 MATH 54

January 31, 2019

Exercise 1. For each pair A, \mathbf{b}, let T be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$. For each, find a vector whose image under T is \mathbf{b}. Is this vector unique?

$$
A=\left[\begin{array}{ccc}
1 & 0 & -2 \\
-2 & 1 & 6 \\
3 & -2 & -5
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-1 \\
7 \\
-3
\end{array}\right] \quad A=\left[\begin{array}{ccc}
1 & -5 & -7 \\
-3 & 7 & 5
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
-2 \\
-2
\end{array}\right]
$$

Exercise 2. Describe geometrically what the following linear transformation T does. It may be helpful to plot a few points and their images!

$$
T=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1
\end{array}\right]
$$

Exercise 3. Let $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{y}_{1}=\left[\begin{array}{l}1 \\ 8\end{array}\right]$ and $\mathbf{y}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 4\end{array}\right]$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation that maps $\mathbf{e}_{\mathbf{1}}$ to $\mathbf{y}_{\mathbf{1}}$ and $\mathbf{e}_{\mathbf{2}}$ to $\mathbf{y}_{\mathbf{2}}$. What is the image of $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$?

Exercise 4. Show that $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{l}x_{2} \\ x_{1}\end{array}\right]$ is a linear transformation.
Exercise 5. Assume T is a linear transformation. Find the standard matrix of T.

- $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, and $T\left(\mathbf{e}_{\mathbf{1}}\right)=(1,3), T\left(\mathbf{e}_{\mathbf{2}}\right)=(4,-7), T\left(\mathbf{e}_{\mathbf{3}}\right)=(-4,5)$, where $\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}$, and $\mathbf{e}_{\mathbf{3}}$ are the columns of the 3×3 identity matrix.
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ first reflects points through the horizontal x_{1} - axis and then reflects points through the line $x_{1}=x_{2}$.
- $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2},-2 x_{1}+x_{2}, x_{1}\right)$.

As a group, choose one of these transformations and figure out if it is one-to-one and onto.

