Worksheet 3

Sections 207 and 219
 MATH 54

January 29, 2018
Exercise 1. Write the following vector equation as a matrix equation and also as a system of linear equations. Solve the system and express your answer in parametric vector form.

$$
\begin{aligned}
& x_{1}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
8 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { Matrix Equation: }\left[\begin{array}{ccc}
-2 & 8 & 1 \\
3 & 5 & -6
\end{array}\right]\left[\begin{array}{c}
x_{1_{2}} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { linear system: } \begin{array}{r}
-2 x_{1}+7 x_{2}+x_{3}=0 \\
3 x_{1}+5 x_{2}-6 x_{3}=0
\end{array} \\
& \text { To solve, we row.reduce the augmented matrix. } \\
& {\left[\begin{array}{cccc}
-2 & 8 & 1 & 0 \\
3 & 5 & -6 & 0
\end{array}\right] \xrightarrow{-\frac{1}{2} R_{1} \rightarrow R_{1}}\left[\begin{array}{cccc}
1 & -4 & -\frac{1}{2} & 0 \\
3 & 5 & -6 & 0
\end{array}\right] \xrightarrow{-3 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & -4 & -\frac{1}{2} & 0 \\
0 & 17 & -\frac{1}{2} & 0
\end{array}\right]} \\
& \xrightarrow{\frac{1}{11} R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & -4 & -\frac{1}{2} & 0 \\
0 & 1 & -\frac{1}{24} & 0
\end{array}\right] \xrightarrow{-4 R_{2}+R_{1} \rightarrow R_{1}}\left[\begin{array}{cccc}
1 & 0 & \frac{-53}{34} & 0 \\
0 & 1 & \frac{-9}{34} & 0
\end{array}\right] \text {. } \\
& \text { So the solutions satisfy } x-\frac{53}{34} z=0, y-\frac{9}{34} z=0
\end{aligned}
$$

Exercise 2. Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}$.

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-5 \\
11 \\
8
\end{array}\right]
$$

b is a linear combination of a_{1}, a_{2}, a_{3} if and only if there exist x_{1}, x_{2}, x_{3} such that:.
$x_{1}\left[\begin{array}{c}1 \\ -2 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right]+x_{3}\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right]=\left[\begin{array}{c}-5 \\ 1 \\ 8\end{array}\right]$.
The augmented matrix of this vector equation is

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -5 \\
-2 & 5 & 0 & 11 \\
2 & 5 & 8 & 8
\end{array}\right] \quad \text { which reduce to }\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & \frac{4}{5} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
3 \text { This is inconsistent. } \\
\text { So } b \text { is not a linear combination } \\
\text { of } a_{1}, a_{2}, a_{3} .
\end{gathered}
$$

Exercise 3. Write the following products as linear combinations of the columns of the matrix. Use this to compute the product.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
6 & 5 \\
-4 & -3 \\
7 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \quad\left[\begin{array}{ccc}
8 & 3 & -4 \\
5 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
6 & 5 \\
-4 & -3 \\
7 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=\left\lvert\,\left[\begin{array}{ccc}
8 & 3 & -4 \\
5 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
8 \\
5
\end{array}\right]+\left[\begin{array}{l}
3 \\
1
\end{array}\right]+\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\right.} \\
& 2\left[\begin{array}{c}
6 \\
-4 \\
7
\end{array}\right]-3\left[\begin{array}{c}
5 \\
-3 \\
6
\end{array}\right]=\left[\begin{array}{l}
7 \\
8
\end{array}\right] \\
& {\left[\begin{array}{c}
12 \\
-8 \\
14
\end{array}\right]+\left[\begin{array}{c}
-15 \\
9 \\
-18
\end{array}\right]=} \\
& {\left[\begin{array}{c}
-3 \\
1 \\
-4
\end{array}\right]}
\end{aligned}
$$

Exercise 4. Do the following vectors span \mathbb{R}^{3} ?

$$
\begin{aligned}
& {\left[\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right] \quad\left[\begin{array}{c}
4 \\
-1 \\
-5
\end{array}\right]} \\
& \begin{array}{l}
\text { Theorem } 4 \text { on }{ }^{[1-2\rfloor} 37 \text { of the beok says the columns of a motrlx } A \\
\text { span } \mathbb{R}^{n} \text { it } A \text { has a pivat position in every row, } \\
\text { Let's find the pivat pasitions of the matrix }\left[\begin{array}{ccc}
0 & 0 & 4 \\
0 & -3 & -1 \\
-3 & 8 & -5
\end{array}\right]
\end{array}
\end{aligned}
$$

Exercise 5. Let A be a 3×2 matrix. Explain why the equation $A \mathbf{x}=\mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^{3}. (i.e. you can always find $\mathbf{a} \mathbf{b}$ such that the equation is inconsistent) Generalize your argument to the case of an arbitrary A with more rows than columns.

Proof. Suppose we have an $r \times c$ matrix where r is bigger than c. Note that since there can be at most one pivot per column, the number of pivots is less than or equal to c. Since the number of rows is greater than c, M must have at least one row without a pivot. If a row does not have a pivot, it is all zeros. We now consider the augmented matrix. Since the echelon form of the coefficent matrix has a row of all zeros, we are able to choose a bo that the last row in the augmented matrix is of the form $[0,0, \ldots, 0 \quad c]$ where c is nonzero, making the system inconsistent.

Exercise 6. Describe all solutions of $A \mathbf{x}=\mathbf{0}$, for the following matrices. Express your answers in parametric vector form.

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & -4 \\
2 & 6 & 0 & -8
\end{array}\right] \quad A=\left[\begin{array}{cccc}
1 & -2 & -9 & 5 \\
0 & 1 & 2 & -6
\end{array}\right]
$$

Exercise 7. Describe the solutions of the system given by the following augmented matrix. Express your answer in parametric vector form.

$$
\left[\begin{array}{cccc}
1 & 3 & 1 & 1 \\
-4 & -9 & 2 & -1 \\
0 & -3 & -6 & -3
\end{array}\right]
$$

We first rav-reduce the matrix:

I circled the pivot positions, we see that x_{3} is a free variable. We con write the solutions of $x_{1}=5 x_{3}+2$

$$
x_{2}=-2 x_{1}-1 .
$$

$$
\text { In parametric vector form, this is }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{y_{1}}\left[\begin{array}{c}
5 \\
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 3 & 1 & 1 \\
-4 & -7 & 2 & -1 \\
0 & -3 & -6 & -3
\end{array}\right] \xrightarrow{4 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc}
1 & 3 & 1 & 1 \\
0 & 3 & 6 & 3 \\
0 & -3 & -6 & -3
\end{array}\right] \xrightarrow{R_{2}+R_{3} \rightarrow R_{3}}\left[\begin{array}{llll}
1 & 3 & 1 & 1 \\
0 & 3 & 6 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{2} R_{2}}} \\
& {\left[\begin{array}{llll}
1 & 3 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{-3 r_{2}+R_{1} \rightarrow g_{1}}\left[\begin{array}{cccc}
1 & 0 & -5 & -2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{l}
\text { This is in reduced } \\
\text { lois etched, }
\end{array}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { We rov-reduce the augment } \\
& \text { matelix: } \\
& {\left[\begin{array}{ccccc}
1 & 3 & 0 & -4 & 0 \\
2 & 6 & 0 & -8 & 0
\end{array}\right] \xrightarrow{\left.-2_{1}+t_{r}\right)_{2}}\left[\begin{array}{ccccc}
1 & 3 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \text { mov-reser } \quad\left[\begin{array}{ccccc}
1 & -2 & -9 & 5 & 0 \\
0 & 1 & 2 & -6 & 0
\end{array}\right] \xrightarrow{2 R_{2}+R_{1}-\rightarrow a_{1}}\left[\begin{array}{cccc}
1 & 0 & -5 & -7 \\
0 & 1 & 2 & -6 \\
0
\end{array}\right]} \\
& x_{2}, x_{3}, x_{4} \text { are free variables. } \\
& \text { writing } x_{1} \text { in tegmen of these, } \\
& x_{1}=-3 x_{2}+4 x_{4} \text {. } \\
& \text { In parametric vector form sa get: } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{1} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{l}
4 \\
0 \\
0 \\
1
\end{array}\right] 2} \\
& \text { Writing } x_{1}, x_{2} \text { in tams of then, we gat: } \\
& \therefore x_{1}=5 x_{6}+7 x_{4} \\
& { }_{i} x_{2}=-2 x_{3}+6 x_{4} \text {. } \\
& \text { In parametiis vector form, we got: } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{1} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
s_{2} \\
-1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
7 \\
6 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Exercise 8. Determine if each set of vectors is linearly independent.

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
5 \\
-8
\end{array}\right],\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-3 \\
9
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
343 \\
454 \\
55 \\
-45 \\
67
\end{array}\right]}
\end{gathered}
$$

(a). We check to see whether there are nontrivin solutions to $x_{1}\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{c}0 \\ 5 \\ -8\end{array}\right]+x_{2}\left[\begin{array}{c}-3 \\ 4 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. The augmented matrix is $\left[\begin{array}{cccc}0 & 0 & -3 & 0 \\ 0 & 5 & 4 & 0 \\ 3 & -8 & 1 & 0\end{array}\right] \stackrel{\substack{\text { rearrange } \\ \text { rows }}}{\substack{\text { and }}}\left[\begin{array}{cccc}-8 & 1 & 0 \\ 0 & 5 & 4 & 0 \\ 0 & 0 & -3) & 0\end{array}\right]$ There are no free variables, so only the trivia solution exists.
S. these vectors are linearly independent
(b) This set is linearly dependent, since the second vector is a cedar multiple of the first.
(c). There exists a nontrivial linear combination that sum to 0°.

Exercise 9. Determine the possible row echelon forms of a 2×2 matrix with linearly dependent columns.

The possible row-echelon term/ of a $2+2$ matrix are

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 8 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & \text { 围 } \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 8 \\
0 & 0
\end{array}\right]
$$

If we view these as coefficient matrices, phthemainanel A of the augmented matrix $\left[\begin{array}{ll}A & 0 \\ 0\end{array}\right],\left[\begin{array}{lll}0 & 0 \\ 0 & 0\end{array}\right]$ is the only one that has no free variables

So $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}\infty & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right]$ are the pasible now echelon forms for a 2×2 matrix with linearly dependent column.

