Worksheet 3

Sections 207 and 219
 MATH 54

January 29, 2018
Exercise 1. Write the following vector equation as a matrix equation and also as a system of linear equations. Solve the system and express your answer in parametric vector form.

$$
x_{1}\left[\begin{array}{c}
-2 \\
3
\end{array}\right]+x_{2}\left[\begin{array}{l}
8 \\
5
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Exercise 2. Determine if \mathbf{b} is a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$.

$$
\mathbf{a}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right], \mathbf{a}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
5 \\
5
\end{array}\right], \mathbf{a}_{\mathbf{3}}=\left[\begin{array}{l}
2 \\
0 \\
8
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-5 \\
11 \\
8
\end{array}\right]
$$

Exercise 3. Write the following products as linear combinations of the columns of the matrix. Use this to compute the product.

$$
\left[\begin{array}{cc}
6 & 5 \\
-4 & -3 \\
7 & 6
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right] \quad\left[\begin{array}{ccc}
8 & 3 & -4 \\
5 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Exercise 4. Do the following vectors span \mathbb{R}^{3} ?

$$
\left[\begin{array}{c}
0 \\
0 \\
-2
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-3 \\
8
\end{array}\right] \quad\left[\begin{array}{c}
4 \\
-1 \\
-5
\end{array}\right]
$$

Exercise 5. Let A be a 3×2 matrix. Explain why the equation $A \mathbf{x}=\mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^{3}. (i.e. you can always find $\mathbf{a} \mathbf{b}$ such that the equation is inconsistent) Generalize your argument to the case of an arbitrary A with more rows than columns.

Exercise 6. Describe all solutions of $A \mathbf{x}=\mathbf{0}$, for the following matrices. Express your answers in parametric vector form.

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & -4 \\
2 & 6 & 0 & -8
\end{array}\right] \quad A=\left[\begin{array}{cccc}
1 & -2 & -9 & 5 \\
0 & 1 & 2 & -6
\end{array}\right]
$$

Exercise 7. Describe the solutions of the system given by the following augmented matrix. Express your answer in parametric vector form.

$$
\left[\begin{array}{cccc}
1 & 3 & 1 & 1 \\
-4 & -9 & 2 & -1 \\
0 & -3 & -6 & -3
\end{array}\right]
$$

Exercise 8. Determine if each set of vectors is linearly independent.

$$
\begin{gathered}
{\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right],\left[\begin{array}{c}
0 \\
5 \\
-8
\end{array}\right],\left[\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right]} \\
{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-3 \\
9
\end{array}\right]} \\
{\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
343 \\
454 \\
55 \\
-45 \\
67
\end{array}\right]}
\end{gathered}
$$

Exercise 9. Determine the possible row echelon forms of a 2×2 matrix with linearly dependent columns.

