Worksheet 3

Sections 207 and 219 MATH 54

January 29, 2018

Exercise 1. Write the following vector equation as a matrix equation and also as a system of linear equations. Solve the system and express your answer in parametric vector form.

$$x_1 \begin{bmatrix} -2\\3 \end{bmatrix} + x_2 \begin{bmatrix} 8\\5 \end{bmatrix} + x_3 \begin{bmatrix} 1\\-6 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix}$$

Exercise 2. Determine if **b** is a linear combination of $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}$.

$$\mathbf{a_1} = \begin{bmatrix} 1\\-2\\2 \end{bmatrix}, \mathbf{a_2} = \begin{bmatrix} 0\\5\\5 \end{bmatrix}, \mathbf{a_3} = \begin{bmatrix} 2\\0\\8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5\\11\\8 \end{bmatrix}$$

Exercise 3. Write the following products as linear combinations of the columns of the matrix. Use this to compute the product.

$$\begin{bmatrix} 6 & 5 \\ -4 & -3 \\ 7 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} \qquad \begin{bmatrix} 8 & 3 & -4 \\ 5 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Exercise 4. Do the following vectors span \mathbb{R}^3 ?

$$\begin{bmatrix} 0\\0\\-2 \end{bmatrix} \qquad \begin{bmatrix} 0\\-3\\8 \end{bmatrix} \qquad \begin{bmatrix} 4\\-1\\-5 \end{bmatrix}$$

Exercise 5. Let A be a 3×2 matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ cannot be consistent for all \mathbf{b} in \mathbb{R}^3 . (i.e. you can always find a \mathbf{b} such that the equation is inconsistent) Generalize your argument to the case of an arbitrary A with more rows than columns.

Exercise 6. Describe all solutions of $A\mathbf{x} = \mathbf{0}$, for the following matrices. Express your answers in parametric vector form.

$$A = \begin{bmatrix} 1 & 3 & 0 & -4 \\ 2 & 6 & 0 & -8 \end{bmatrix} \qquad \qquad A = \begin{bmatrix} 1 & -2 & -9 & 5 \\ 0 & 1 & 2 & -6 \end{bmatrix}$$

Exercise 7. Describe the solutions of the system given by the following augmented matrix. Express your answer in parametric vector form.

$$\begin{bmatrix} 1 & 3 & 1 & 1 \\ -4 & -9 & 2 & -1 \\ 0 & -3 & -6 & -3 \end{bmatrix}$$

Exercise 8. Determine if each set of vectors is linearly independent.

$$\begin{bmatrix} 0\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\5\\-8 \end{bmatrix}, \begin{bmatrix} -3\\4\\1 \end{bmatrix}$$
$$\begin{bmatrix} 1\\-3\\9 \end{bmatrix}$$
$$\begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\4\\5 \end{bmatrix}, \begin{bmatrix} 343\\454\\55\\-45\\67 \end{bmatrix}$$

Exercise 9. Determine the possible row echelon forms of a 2×2 matrix with linearly dependent columns.