Worksheet 21

Sections 207 and 219
 MATH 54

April 18, 2019

Exercise 1. Consider $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t), t \geq 0$, where $A=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$.
(a) Show that the eigenvalues are $-1,-3$ and $\mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are the corresponding eigenvectors.
(b) Sketch the tractory of the solution having initial vector $\mathbf{x}(0)=\mathbf{u}_{\mathbf{1}}$.
(c) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0)=-\mathbf{u}_{\mathbf{2}}$.
(d) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0)=\mathbf{u}_{\mathbf{1}}-\mathbf{u}_{\mathbf{2}}$.

Exercise 2. Give a general solution to:

$$
\mathbf{x}^{\prime}(t)=\left[\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right]
$$

Exercise 3. Use the substitutions $x_{1}=y, x_{2}=y^{\prime}$ to convert $a y^{\prime \prime}+b y^{\prime}+c y=0$ into a normal system. Show that the characteristic equation of the system is the same as the aux equation for the original equation.

Exercise 4. Find a general solution of the system $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$ for the given matrix A . You can use the fact that the eigenvalues of A are $2,2+i$, and $2-i$.

$$
A=\left[\begin{array}{ccc}
5 & -5 & -5 \\
-1 & 4 & 2 \\
3 & -5 & -3
\end{array}\right]
$$

