Worksheet 2

Sections 2017 and 219 MATH 54

Jan 24, 2018

Exercise 1. The following three matrices are already in row echelon form. Which represent a consistent system of equations? How many solutions does each system have?

$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$	$ \begin{array}{ccc} 1 & 1 \\ 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{array} $	0 0 0 0	1 2 3 0	$ \begin{array}{c} 1\\2\\3\\4\end{array} $	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	1 1 0	
	0 0	0	0	4	L°	0		Ľ	

Exercise 2. Put the following in row echelon form.

1	-7	0	6	5
0	0	1	-2	-3
-1	$\overline{7}$	-4	2	7

Then put each into reduced echelon form and describe the solution set.

Exercise 3. Describe the possible echelon forms of a nonzero 3×2 matrix. Use the symbols \Box , *, and 0, where \Box means a nonzero number and * means any number.

Exercise 4. Find h, k such that the system below has: (a) no solutions, (b) a unique solution, and (c) infinitely many solutions.

$$x + hy = 2$$
$$4x + 8y = k$$

Exercise 5. Suppose the coefficient matrix of a system of linear equations has a pivot position in every row. Explain why the system is consistent.

Exercise 6. A system of linear equations with more equations than unknowns is sometimes called *overdetermined*. Can such a system be consistent? Illustrate your answer with a specific system of 3 equations and 2 unknowns. (It may be helpful to draw a picture in the plane!)