Worksheet 18

Sections 207 and 219
 MATH 54

April 9

Exercise 1. Find a general solution to the given differential equations:
(a) $y^{\prime \prime}-y^{\prime}-2 y=0$
(b) $y^{\prime \prime}-5 y^{\prime}+6 y=0$
(c) $4 y^{\prime \prime}-4 y+y=0$

Exercise 2. Solve the initial given value problems:
(a) $y^{\prime \prime}+y^{\prime}=0 ; y(0)=2 ; y^{\prime}(0)=1$
(b) $y^{\prime \prime}-4 y^{\prime}+4 y ; y(1)=1 ; y^{\prime}(1)=1$

Exercise 2. Solve the initial given value problems:
(a) $y^{\prime \prime}+y^{\prime}=0 ; y(0)=2 ; y^{\prime}(0)=1$
(b) $y^{\prime \prime}-4 y^{\prime}+4 y ; y(1)=1 ; y^{\prime}(1)=1$
(a). First we find the general solution:.

$$
\text { auxiliary equation :. } \begin{array}{r}
r^{2}+r=0 \\
r(r+1)=0 .
\end{array} \Rightarrow r_{2} D_{1}-1
$$

So our general solution is $y(t)=c_{0}+c_{1} e^{-t}$

$$
\left\{\begin{array}{l}
\text { note, since } e^{\Delta^{t}}=1 \text {, this } \\
\text { ir just o cost ont. }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { First we firm the selntion different from } \\
& \text { the genet solution: ports }(a) \text { ant (b). } \\
& \begin{array}{c|ll}
\text { aux equation: } \\
r^{2}-4 r+4=0 & \text { So the } & \text { gencen solution is: } \\
(r-2)=0 & y(t)= & c_{1} e^{26}+c_{2} t e^{2 t} .
\end{array} \\
& \text { We now the the initial conditions } \\
& \text { to solve for } c_{1} \text { and } c_{2} \text {. } \\
& \begin{array}{l}
y^{(1)}=1: \quad y(1)=1=c_{1} e^{2}+c_{2} e^{2} \\
\text { Note: } \quad y^{\prime}(6)=2 c_{1} e^{2 t}+2 c_{2} t e^{26}+c_{2}\left(e^{2}\right. \\
y^{\prime}(1)=1: c^{2}(1)=2 c_{1} e^{2}+3 c_{2} e^{2}=c_{1}=2 e^{2}
\end{array} \\
& \begin{array}{l}
y^{\prime}(1)=1: y^{\prime}(1)=1=2 c_{1} e^{2}+3 c_{2} e^{2} \Rightarrow \begin{array}{l}
c_{1}=2 / e^{2} \\
c_{2}=-1 / e^{2}
\end{array}, ~=y^{2}(t)=2 e^{2}=1
\end{array} \\
& \text { So } y(t)=\frac{2}{e^{2}} e^{2 t}-\frac{1}{e^{2}} t e^{2 t} \text {. }
\end{aligned}
$$

Exercise 3. (a) With your group, reread definition 1 in this section (restated below):
A pair of functions $y_{1}(t)$ and $y_{2}(t)$ is said to be linearly independent on an interval I if and only if neither of them is a constant multiple of the other on all of I.
(b) Are $y_{1}(t)=e^{3 t}$ and $y_{2}(t)=e^{-4 t}$ linearly independent?
(c) Are $y_{1}=\tan ^{2}(t)-\sec ^{2}(t)$ and $y_{2}(t)=3$ linearly independent?

> (b). These are linemly independent. since they are not constant multiples of each ot re. We can see this by showing that their ration $\frac{e^{36}}{e^{-4 t}}=e^{7 t}$ is not
(c). $N_{0}{ }^{\prime}$
remember from trig that

$$
\sin ^{2} t+\cos ^{2} t=1 .
$$

Dividing both sides by $\cos ^{2} t_{1}$ we ger
$\tan ^{2} t+1=\sec ^{2} t$ which rearranges t.
$\tan ^{2}(t)-\sec ^{2}(6)=1$.
So even though $y_{1}(t)$ has a complicols) formula, we see that $y_{1}(t)=1$. So $y_{2}(t)=3$ is a multiple of $y_{1}(t)$.

$$
\text { so } y_{1}, y_{2} \text { are not lin ind. }
$$

Exercise 4. (a) Explain why two functions are linearly dependent on an interval I if and only if there exist constants c_{1} and c_{2}, not both zero, such that

$$
c_{1} y_{1}(t)+c_{2} y_{2}(t)=0
$$

for all t in I.
(b) Discuss with your group how this connects to the idea of linear independence that we discussed in the linear algebra section of the course.
(c) Expand the defintion of linear independent functions to apply to sets of 3 or more functions.
tuilurivia.
(a). Since this is an "if ant only if" statement, we have to sher both fictions, \Rightarrow Firctwe show that if y_{1}, y_{2} are lin day on I_{1}, then. there ever c_{1}, c_{2} not both S such that $c_{1} y_{1}(t)+c_{2} y_{1}(t)=0$. If y_{1}, y_{1} and lin dee, then $y_{1}(t)=c_{y}(t)$ for sure costate co. This an be revenged to $y_{1}(t)-c y_{2}(t)=0$, which satisfy the condition if yum lat $c_{1}=1, c_{2}=-c$.

$$
\mathcal{E} \text { We na show that if there exits } c_{11} c_{2} \text {, not beth } 0 \text {, net that } c_{1} y,(t)+c_{2} y_{2}(t)=0 \text {, }
$$

$$
\text { then } y_{11} y_{2} \text { mo in sep }
$$

$$
\begin{aligned}
& \text { hen } y_{11} y_{1} \text { ard in dep } \\
& \text { Cane } 1: c_{1} \neq 0 \text {. We can divide bute niter by } c_{1} \text { and rearrange }
\end{aligned}
$$

$$
\begin{aligned}
& \text { to } 1: c_{1} \neq 0 \text {. We can devise bet } y_{1}(t) \cdot \frac{-c_{0}}{c_{1}} y_{y}(t) \text {, satisfy th definition of lin dep. }
\end{aligned}
$$

$$
\text { Cancezicat0 sirilarte case } 1 \text {. }
$$

$$
\text { (c) } y_{1}, \ldots y_{n} \text { are } l i n \text { ind' on interval } I \text { if }
$$

$$
C_{1} y_{1}(t)+\ldots+C_{n} y_{r}(t)=0 \text { on all of I only when }
$$

$$
c_{1}=c_{2}=\quad=c_{n}=0
$$

(this is the same ida os for lin ind vectors).

Exercise 5. We are starting a new section of this course, so there may be vocabulary that you have not seen before. In the context of this chapter, make sure you know what each of the words/phrases means in your own words:
(a) an interval I
(b) general solution
(c) initial value problem
(d) uniqueness
(a): An interval is the set of red numbers between two empuits a, b.
i

(b) A general solution ells you the form of all possible solutions to a differential equation.
(c) An initial vale problem asks to find the solution of a diff that satisfies certain values for y, y^{\prime}, \ldots (depending on order of equates) for a specific pirn.
(d) A solution to arm a set of equation /initial value condition, is unique if it is the only one that satisfies them.

Exercise 6. Find a general solution to the given differential equations:
(a) $y^{\prime \prime}+y=0$
(b) $y^{\prime \prime}-10 y^{\prime}+26 y=0$
(c) $y^{\prime \prime}-4 y^{\prime}+7 y=0$
(a). The auxiliary equation is $r^{2}+1=0$, which has solutions $\pm i$ hand So the general solution is $y(t)=c_{1} c^{o t} \sin t+c_{2} e^{0 t} \cos t=$ $c_{1} \sin t+c_{2} \cos t$.
(b). The auxiliary equation is $r^{2}-10 r+26=0$. Using quadratic formula,

$$
\begin{aligned}
\text { we Bet } r & =\frac{10 \pm \sqrt{100-104}}{2}=5 \pm i \\
& \text { so } y(t): c_{1} e^{5 t} \sin t+c_{2} e^{5 t} \cos t .
\end{aligned}
$$

(c) The ancilociy equation is $r^{2}-4 r+7=0$ Using grad formula, we get $r=\frac{4 \pm \sqrt{-12}}{2}=2 \pm \sqrt{3}$.

So $y(x)=c_{1} e^{2 x} \sin (\sqrt{3} x)+c_{2} e^{2 x} \cos (\sqrt{3} x)$

Exercise 7. Find a general solution to the following higher-order equation:

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}+3 y=0
$$

The auxiliary equation is $r^{3}-r^{2}+r+3=0$
From win guess acdchect, we sec that. $r=-1, b,(r+1)$ is a factor. You can we polynomid long devicion to finish foctorimy'. (4) 4) $)\left(\right.$ ($(r+1)\left(r^{2}-2 r+3\right)=0$. So the root, are $r=-1$, $1 \pm \sqrt{2} i$
so $y(t)=c_{1} e^{-t}+c_{2} e^{t} \sin (\sqrt{2} t)+c_{3} e^{t} \cos (\sqrt{2} t)$.

Exercise 8. Prove the sum of angles formula for the sine function by following these steps. Let x be a fixed constant.
(a) Let $f(t)=\sin (x+t)$. Show that $f^{\prime \prime}(t)+f(t)=0, f(0)=\sin x$, and $f^{\prime}(0)=\cos (x)$.
(b) Use the auxiliary technique to solve the initial value problem $y^{\prime \prime}+y=0, y(0)=\sin (x)$, and $y^{\prime}(0)=\cos (x)$.
(c) By uniqueness, the solution in part (b) is the same as $f(t)$ from part (a). Write this equality, this should be the standard sum of angles formula for $\sin (\mathrm{x}+\mathrm{t})$.
(a). Before verifying these things, we compute the first three derivoty,

$$
\frac{\text { with respect to } t}{f^{\prime}(t)=\cos (x+t)} \text {. (ie we treat } x \text { as a contact) } \quad f^{\prime \prime}(t)=-\sin (x+t) .
$$

So indeed, $\quad f^{\prime \prime}(t)+f(t)=-\sin (x+t)+\sin (x+t)=0$.

$$
f(0)=\sin (x+0)=\sin (x) \text { as desire. }
$$

$$
f^{\prime}(0)=\cos (x+0)=\cos (x)
$$

(b). The and equation ais $r^{2}+1=0 \Rightarrow r= \pm i$.

$$
\text { S. } y(t)=c_{1} \sin t+c_{2} \cos t, y^{\prime}(t)=c_{1} \cos t-c_{2} \sin t \text {. }
$$

We now solve initio value problem.

$$
y(0)=\sin c_{2} \cos x=c_{2}=\sin x \quad \text { So } \begin{aligned}
& c_{1}=\cos x \\
& c_{2}=\sin x
\end{aligned}
$$

$$
y^{\prime}(0)=c_{1} \cos 0_{1}=c_{1}=\cos \frac{(x)}{3} \quad \text { So } c_{2}=\sin x
$$

$$
\text { Patin this together, } y(t)=\cos x \sin t+\sin x \cos t
$$

(c). Setting $y(t)=f(t)$, we get $\cos x \sin t+\sin x \cos t=\sin (x+t)$

