Worksheet 16

Sections 207 and 219
MATH 54
π day, 2019
Exercise 1. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form an orthoganal basis for \mathbb{R}^{3}. Then express \mathbf{x} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right], \mathbf{x}=\left[\begin{array}{c}
5 \\
-3 \\
1
\end{array}\right]
$$

Note: below they accidentally do not check that v_{1} and v_{3} are orthogonal, but this step is also necessary.

$$
\begin{aligned}
& \text { recheck to make sur every pair is orthozood. } \\
& \vec{V}_{1} \cdot \vec{v}_{2}=6-6+0=0, \quad \vec{v}_{2} \cdot \vec{V}_{2}=2+2-4=0 \text {, } \\
& \text { Since we have a set of } 3 \text {, the vectari in } \mathbb{R}^{3} \text {, they form an orthozend basis of } \mathbb{R}^{3} \text {. } \\
& \text { Since the basis is ortroznal, we can use the formula in Tum } 5 \text { (page 341) } \\
& \text { to find } c_{1} c_{1}, c \text {, such that } c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{2} \vec{v}_{2}=\vec{x} \\
& C_{1}=\frac{\vec{x}_{N} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}}=\frac{15+9+0}{9+9}=\frac{24}{18}=\frac{4}{3} \\
& C_{2}=\frac{\vec{x} \cdot \vec{v}_{2}}{\vec{v}}=10-6-1 \quad \text { So } \vec{x}=\frac{4}{3}\left[\begin{array}{c}
-3 \\
0
\end{array}\right]+\frac{1}{3}\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+\frac{1}{3}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& C_{3}=\frac{\vec{x} \cdot \vec{v}_{3}}{\overrightarrow{v_{0}} \cdot \vec{v}_{2}}=\frac{5-3+4}{1+1+16}=\frac{6}{18}=\frac{1}{3}
\end{aligned}
$$

Exercise 2. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\operatorname{span}\{\mathbf{u}\}$ and one orthog-
onal to it.

$$
\mathbf{y}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \mathbf{u}=\left[\begin{array}{c}
4 \\
-3
\end{array}\right]
$$

Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

$$
\begin{aligned}
& \text { We wish to write } \vec{y}=\hat{y}+\vec{z} \text {, where } \hat{y} \text { is in } \operatorname{span}\{\vec{u}\} \\
& \text { and } \vec{z} \text { is orthogonal tit. Let } w \text { be the subspose spanré by } \vec{v} \text {. } \\
& \text { Then. } \hat{y}=\operatorname{proj}_{w} \vec{y}=\frac{\vec{j} \cdot \vec{v}}{v \cdot \vec{u}} \vec{u}=\frac{8-9}{16+9}\left[\begin{array}{c}
4 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-4 / 25 \\
3 / 25
\end{array}\right] \\
& \text { and } \vec{z}=\vec{y}-\hat{y}:\left[\begin{array}{l}
2 \\
3
\end{array}\right]-\left[\begin{array}{l}
-4 / 26 \\
3 / 25
\end{array}\right]=\left[\begin{array}{l}
54 / 25 \\
72 / 25
\end{array}\right] \\
& \text { So } \vec{y}=\left[\begin{array}{c}
-4 / 25 \\
3 / 25
\end{array}\right]+\left[\begin{array}{l}
54 / 25 \\
72 / 25
\end{array}\right] \text {. } \\
& \text { From the following picture, we can see th at the } \\
& \text { desired distance is }\|\vec{z}\|=\sqrt{\left(\frac{54}{25}\right)^{2}+(72 / 25)^{2}} \text {. }
\end{aligned}
$$

(sorry, I accidental) (pic)

1

Exercise 3. True and false! Justify your answers!
(a) If A is an $n \times n$ matrix with orthogonal columns, then it is invertible.
(b) If a set $\left\{\mathbf{u}_{\mathbf{1}}, \ldots \mathbf{u}_{\mathbf{p}}\right\}$ has the property that $\mathbf{u}_{\mathbf{i}} \cdot \mathbf{u}_{\mathbf{j}}=0$ whenever $i \neq j$ then S is an orthonormal set.
(c) If c is not 0 , then the orthogaonl projection of \mathbf{y} onto a vector \mathbf{u} is the same as the orthogonal projection of \mathbf{y} onto cu .
(a). False: Fo, example $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ has orth. columns, but
is not invertible.
(20) .The statement "If A is an nor matrix with orthegond, manzecro columns, then it is invertible", is true, hoverer.
(b) Fold! The \tilde{u}_{i} also have to be unit vectors for the
set to be an eithororend set.
(c) True! You can see it by drawing a picture, or by do
$\operatorname{proj}_{e \rightarrow \vec{u}} \vec{y}=\frac{\ell \vec{u} \cdot \vec{y}}{f \vec{u} \cdot q \vec{u}}(l \vec{u})=\frac{\vec{u} \cdot \vec{y}}{\vec{u} \cdot \vec{u}} \vec{u}=\operatorname{proj} \vec{u} \vec{y}$.
Warning. Yon can cancel out seders in
dot product compotation!
but you cant cancel ant vectors.

Exercise 4. Let W be the subspace spanned by the $\mathbf{v}^{\prime} s$ and write \mathbf{y} as a sum of a vector in W and a vector orthogonal to W.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
-1
\end{array}\right], \mathbf{y}=\left[\begin{array}{l}
3 \\
4 \\
5 \\
6
\end{array}\right]
$$

What is the closest point in W to \mathbf{y} ?

$$
\begin{aligned}
& \text { Again, we wort to write } \\
& \vec{y}=\hat{y}+\vec{z} \text {, where } \hat{y} \text { is in } W \text { and } \vec{z} \text { is orthogonal tow, } \\
& \text { Using the formula in the orth. jerome. thin, } \\
& \text { we get: } \\
& \hat{y}=\frac{\vec{y} \cdot \vec{V}_{1}}{\vec{V}_{1} \cdot \vec{v}_{1}} \vec{V}_{1}+\frac{\vec{y} \cdot \vec{V}_{2}}{\overrightarrow{V_{i}} \vec{V}_{l}} \vec{V}_{2}+\frac{\vec{y} \cdot \vec{V}_{3}}{\frac{V_{3}}{} \cdot \overrightarrow{V_{2}}} \vec{V}= \\
& \frac{1}{3} \cdot \vec{u}_{1}+\frac{14}{3} \vec{u}_{2}-\frac{5}{3} \vec{v}_{3}=\left[\begin{array}{l}
5 \\
2 \\
3 \\
6
\end{array}\right] \\
& \text { and } \vec{z}=\vec{y}-\hat{y}=\left[\begin{array}{c}
-2 \\
2 \\
2 \\
0
\end{array}\right] \\
& \text { So } y=\left[\begin{array}{l}
5 \\
2 \\
3 \\
6
\end{array}\right]+\left[\begin{array}{c}
-2 \\
2 \\
2 \\
0
\end{array}\right] \\
& \text { The closest point in } w \text { to } \hat{y} \text { is } \hat{y}=\operatorname{proj}_{w} \hat{y}=\left[\begin{array}{l}
5 \\
2 \\
3 \\
6
\end{array}\right]
\end{aligned}
$$

Exercise 5. Find the orthogonal complement of W, where W is the span of the following two vectors:

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right]
$$

To do this problem, use the theorem that says that the row space of A and the null space of A are orthogonal complements. Make a matrix using the given vectors as rows, and then use usual methods to find a basis of the null space.

Exercise 6. Without looking at the proof in the book, show that a set of nonzero orthogonal
vectors is linearly independent.
Let $\left\{\vec{v}_{1} \ldots \vec{u}_{p}\right\}$ bc an orthogonal et of nonzero vectors. Suppose then exist $c_{1}, \ldots C_{p}$ such that $c_{1} \vec{u}_{1}+\ldots+c_{p} \vec{u}_{p}=D$. In order to show $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is lin ind, we just have to shew

$$
c_{1}=\ldots=c_{r}=0
$$

We first show that $c_{1}=0$. We dot both rides by \vec{u}_{1} :

$$
\begin{aligned}
& \vec{u}_{1} \cdot\left(c_{1} \cdot \vec{u}_{1}+\cdots+c_{p} \vec{u}_{p}\right)=\vec{u}_{1} \cdot \overrightarrow{0}=0 \\
& \Downarrow \\
& c_{1} \vec{u}_{1} \cdot \vec{u}_{1}+c_{2} \vec{u}_{1} \cdot \vec{u}_{2}+c_{3} \vec{v}_{1} \cdot \vec{u}_{2}+\ldots+c_{p} \vec{u}_{1} \cdot \vec{u}_{p}=0 .
\end{aligned}
$$

Becavie the vectors are orthogond, mont of these termed. are O we are left with

$$
c_{1}\left\|\vec{u}_{1}\right\|^{2}=0 \text {, since } \vec{u}_{1} \cdot \vec{u}_{1}=\left\|\vec{u}_{1}\right\|^{2}
$$

$$
\operatorname{Sin} c \tilde{u}_{1} \neq \overrightarrow{0},\left\|\vec{u}_{1}\right\| \neq 0 \text {. so } c_{1}=0 \text {. }
$$

We can use the same reasoning to show that all the c's are 0 . so $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ are lin ind by def.

