Worksheet 16

Sections 207 and 219 MATH 54

 π day, 2019

Exercise 1. Show that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form an orthogonal basis for \mathbb{R}^3 . Then express \mathbf{x} as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$$

Exercise 2. Write y as the sum of two orthogonal vectors, one in span $\{u\}$ and one orthogonal to it.

 $\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$

Compute the distance from y to the line through u and the origin.

Exercise 3. True and false! Justify your answers!

- (a) If A is an $n \times n$ matrix with orthogonal columns, then it is invertible.
- (b) If a set $\{\mathbf{u_1}, \dots \mathbf{u_p}\}$ has the property that $\mathbf{u_i} \cdot \mathbf{u_j} = 0$ whenever $i \neq j$ then S is an orthograml set.
- (c) If c is not 0, then the orthogonal projection of \mathbf{y} onto a vector \mathbf{u} is the same as the orthogonal projection of \mathbf{y} onto $c\mathbf{u}$.

Exercise 4. Let W be the subspace spanned by the $\mathbf{v}'s$ and write \mathbf{y} as a sum of a vector in W and a vector orthogonal to W.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0\\-1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\-1\\1\\-1 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} 3\\4\\5\\6 \end{bmatrix}$$

1

What is the closest point in W to \mathbf{y} ?

Exercise 5. Find the orthogonal complement of W, where W is the span of the following two vectors:

$$\begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

Exercise 6. Without looking at the proof in the book, show that a set of nonzero orthogonal vectors is linearly independent.