Worksheet 14

Sections 207 and 219 MATH 54

March 12, 2019

Exercise 1. (a) Find eigenvalues and a basis for each eigenspace in \mathbb{C}^2 of the following matrix:

$$\begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$$

(b) Find an invertible matrix P and a matrix C of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that the given matrix has the form PCP^{-1} .

Exercise 2. The following matrix is the matrix for a composition of a rotation and a scaling. Give the angle ϕ of rotation and the scalar factor r.

$$\begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$$

$$A = \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$$
We pull out a factor of the magnitude of the first column'.

$$r = \sqrt{(-\frac{\pi}{3})^2 + (-\frac{3}{2})^4} = \sqrt{\frac{3}{4} + \frac{3}{4}} = 1.$$
So $A = 1 \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix} = 1 \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$
where ϕ is the angle given in the following tringle
From trigonometry, we see that $\phi = -210^3 = \frac{7\pi}{6}$ radius.

Exercise 3. True or false? Justify please! Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n .

- (a) $\mathbf{u} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{u} = 0$
- (b) $dist(\mathbf{u}, \mathbf{v}) + dist(\mathbf{v}, \mathbf{w}) = dist(\mathbf{u}, \mathbf{w})$

(a) True! This is because talking the bat product is commutative. (b) Folse: Let $\vec{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. $dirt(\vec{u}, \vec{v}) \neq dirt(\vec{v}, \vec{v}) = 1$ 1+1=2 but $dirt(\vec{u}, \vec{v}) = \sqrt{1^2+1^2} = \sqrt{2}$. **Exercise 4.** Find a unit vector in the direction of the given vector. Draw a picture of what an orthogonal vector would look like.

Exercise 5. True and false! Justify your answers!

- (a) For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.
- (b) If **v** is orthogonal to every vector in a subspace W, then **v** is in W^{\perp} .
- (c) If $||\mathbf{u}||^2 + ||\mathbf{v}||^2 = ||\mathbf{u} + \mathbf{v}||^2$, then \mathbf{u} and \mathbf{v} are orthogonal.
- (d) For an $m \times n$ matrix A, vectors in nul A are orthogonal to vectors in row A.

Exercise 6. For what values of b is the following matrix diagonalizable?

 $\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$

$$A:\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$
This is diagonalizable it and only it b=0.
Case 2: b #0. We know A has only are eigenvalue, and on the singer of the diagonal entries. We have find the eigenspree by finding the null space of $A-aI = \begin{bmatrix} 0 & b \\ 0 & a \end{bmatrix}$.
Which is a diagonal finding the null space of $A-aI = \begin{bmatrix} 0 & b \\ 0 & a \end{bmatrix}$.
Diagonalizable.

$$\begin{bmatrix} 0 & b & 0 \\ 0 & 0 & a \end{bmatrix}$$
Since $b #0$. This means $X_{e} = 0$ and X_{e} is a free variable.

$$S_{e} = \begin{bmatrix} x_{e} \\ x_{e} \end{bmatrix} = X_{e} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
The singer only $2^{eigenspree}$ is one-dimensional so these are not enough limited eigenvectors $F_{ex} = A + a = b = b$.