Worksheet 14

Sections 207 and 219
 MATH 54

March 12, 2019
Exercise 1. (a) Find eigenvalues and a basis for each eigenspace in \mathbb{C}^{2} of the following matrix:

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 3
\end{array}\right]
$$

(b) Find an invertible matrix P and a matrix C of the form $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ such that the given matrix has the form $P C P^{-1}$.
(a). To find the eigenvalues, we solve the characteristic equation:

$$
\left|\begin{array}{cc}
5-\lambda & -2 \\
1 & 3-\lambda
\end{array}\right|=\left(\lambda^{2}-8 \lambda+15\right)_{+2}=\lambda^{2}-8 \lambda+17=0 \quad \text { So } \lambda=\frac{8 \pm \sqrt{64-6 t}}{2}=4 \pm i .
$$

$\frac{\lambda=4+i}{t i}:$ To find the eigenspace, wa find the nulls poe of $\left[\begin{array}{cc}5-(4+i) & -2 \\ 1 & 3-(4+i\end{array}\right]$ $\left[\begin{array}{cc|c}1-i & -2 & 0 \\ 1 & -1-i & 0\end{array}\right]$ We know this has a nontriv solution, s, since this a $2+2$ matrix the second row mat using jut th find equation. $(1-i) x_{1}-2\left(x_{2}\right)=0$.

$$
\text { SO }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
\frac{2}{1-i} \\
1
\end{array}\right]: x_{2}\left[\begin{array}{c}
1+i \\
1
\end{array}\right] \text {. So }\left\{\left[\begin{array}{c}
1+i \\
1
\end{array}\right]\right\} \text { is a possible basis. }
$$

$$
\frac{\lambda=4-i}{w_{2} \mathrm{~cm} \text { just musette finstrowi, } x_{1}(1+i)-2 x_{2}=0,}
$$

$$
\text { S. }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
\frac{2}{1+i} \\
1
\end{array}\right]=x_{2}\left[\begin{array}{c}
1-i \\
1
\end{array}\right] \text {. So }\left\{\left[\begin{array}{c}
1-i \\
1
\end{array}\right]\right\} \text { is a possie bait, }
$$

(b) By the $9: \begin{gathered}\text { an page 301. } \\ \text { since } \\ \text { b }\end{gathered}$ we have an ciganuale of $4-i$ with elgenvec $\vec{v}=\left[\begin{array}{c}1-i \\ 1\end{array}\right]$, We car write $A=P C p^{-1}$, whee $P=\left[\begin{array}{ll}R & \vec{v} \\ \text { in } & \vec{V}\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right]$,

$$
\text { and } C,\left[\begin{array}{cc}
4 & -1 \\
1 & 4
\end{array}\right] \text {. }
$$

Exercise 2. The following matrix is the matrix for a composition of a rotation and a scaling. Give the angle ϕ of rotation and the scalar factor r.

$$
\left[\begin{array}{cc}
-\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
-\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & -\sqrt{3} / 2
\end{array}\right]
$$

Wi pull out : factor bethe magnets) of the first column.
$r=\sqrt{\left(-\frac{\sqrt{3}}{3}\right)^{2}+\left(-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}+\frac{1}{4}}=1$.
So $A=1\left[\begin{array}{cc}-\sqrt{3} / 2 & 1 / 2 \\ -1 / 2 & -\sqrt{3} / 2\end{array}\right]=1\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$
when d is the angle given in th following triangle From trigonometry, we soc that $\phi=-210^{\circ}=\frac{7 \pi}{6}$ caldron.

2

Exercise 3. True or false? Justify please! Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{n}.
(a) $\mathbf{u} \cdot \mathbf{v}-\mathbf{v} \cdot \mathbf{u}=0$
(b) $\operatorname{dist}(\mathbf{u}, \mathbf{v})+\operatorname{dist}(\mathbf{v}, \mathbf{w})=\operatorname{dist}(\mathbf{u}, \mathbf{w})$
(a) True! This "becarge taking th bot protect is commentative.
(b) False. Let $\vec{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \vec{v}=\left[\begin{array}{l}0 \\ 0\end{array}\right], \vec{w}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Exercise 4. Find a unit vector in the direction of the given vector. Draw a picture of what an orthogonal vector would look like.

$$
\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right]
$$

orthogonal vector would look like.

We divide by the magnitude of th vector, w which is

$$
\begin{aligned}
& \sqrt{(-6)^{2}+4^{2}+(-3)^{2}}=\sqrt{36+16+9}=\sqrt{61} \\
& \text { So a vent vector is ty save direction is } \frac{1}{\sqrt{61}}\left[\begin{array}{c}
-6 \\
4 \\
-3
\end{array}\right]
\end{aligned}
$$

Exercise 5. True and false! Justify your answers!
(a) For any scalar $c,\|c \mathbf{v}\|=c\|\mathbf{v}\|$.
(b) If \mathbf{v} is orthoganal to every vector in a subspace W, then \mathbf{v} is in W^{\perp}.
(c) If $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}=\|\mathbf{u}+\mathbf{v}\|^{2}$, then \mathbf{u} and \mathbf{v} are orthogonal.
(d) For an $m \times n$ matrix A, vectors in nub A are orthogonal to vectors in row A.
(a) False! When c is negative, $\|e v\|$ is peritive, but $c\|l\|$ is negative. To fix this, $\|c \vec{v}\|=|c|\|\vec{v}\|$ is a true statement.
(b) True! This follars from the detinition of being orthogoved to a subspoce:
(c) True. Sec Thm 2 or poze 336.
(d) True! Sec Thm 3. on paze 337.

$$
\text { If } y^{m} \text { are inters,tel in } 1_{1} \text { bicf peoof, Let } \vec{z} \text { be in nw } A \text {, and }
$$

Exercise 6. For what values of b is the following matrix diagonalizable?

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]} \\
A:\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right]
\end{gathered}
$$

This is dimgoralizable it and only it $b=0$.
Cave 1: $b=0$ (1 se 2: $b \neq 0$. We knove A has inly ore elgonverle: a_{1} Then $A=\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$ since A is triangnlor and thwe itr ciger uoles are on - We hor find the eigensprace ly which is a diazonad findiz the null space of $A-a=\left[\begin{array}{ll}0 & 6 \\ 0 & 0\end{array}\right]$. matrix, which is dingundizeable.

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
0 & b & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { Since } b \neq 0 \text {, Thit meore } x_{t}=0 \text { and } x_{1} \text { is }} \\
& \text { afree valiable. } \\
& \text { S. }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text {. The oipo only } \\
& 2^{\text {eigenspaci }} \text { is one-dimension so } \\
& \text { thes an not enangh linifind eigonvectors } \\
& \text { for } A \text { to be dimgonalizable. }
\end{aligned}
$$

