Worksheet 14

Sections 207 and 219 MATH 54

March 12, 2019

Exercise 1. (a) Find eigenvalues and a basis for each eigenspace in \mathbb{C}^2 of the following matrix:

$$\begin{bmatrix} 5 & -2 \\ 1 & 3 \end{bmatrix}$$

(b) Find an invertible matrix P and a matrix C of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ such that the given matrix has the form PCP^{-1} .

Exercise 2. The following matrix is the matrix for a composition of a rotation and a scaling. Give the angle ϕ of rotation and the scalar factor r.

$$\begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ -1/2 & -\sqrt{3}/2 \end{bmatrix}$$

Exercise 3. True or false? Justify please! Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n .

- (a) $\mathbf{u} \cdot \mathbf{v} \mathbf{v} \cdot \mathbf{u} = 0$
- (b) $dist(\mathbf{u}, \mathbf{v}) + dist(\mathbf{v}, \mathbf{w}) = dist(\mathbf{u}, \mathbf{w})$

Exercise 4. Find a unit vector in the direction of the given vector. Draw a picture of what an orthogonal vector would look like.

$$\begin{bmatrix} -6\\4\\-3 \end{bmatrix}$$

Exercise 5. True and false! Justify your answers!

- (a) For any scalar c, ||c|| = c||||.
- (b) If is orthoganal to every vector in a subspace W, then is in W^{\perp} .
- (c) If $||\mathbf{u}||^2 + |||^2 = ||\mathbf{u} + ||^2$, then \mathbf{u} and are orthogonal.
- (d) For an $m \times n$ matrix A, vectors in nul A are orthogonal to vectors in row A.

Exercise 6. For what values of b is the following matrix diagonalizable?

$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$$