Worksheet 13

Sections 207 and 219
 MATH 54

March 7, 2019
Exercise 1. Mark each statement True or False. Justify each answer. For these problems, A, B are $n \times n$ matrices.
(a) If A, B are row equivalent, then they have the same eigenvalues.
(b) If A has n eigenvectors, A is diagonalizable.
(c) If A has n distinct eigenvalues, it is diagonalizable.
(d) If A is diagonalizable, then A has n distinct eigenvalues
(c) It A mas n custunct eigenvalues, it is ulagulauzaute.
(a). False! row operations can chorea eigenvaver! for example $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ (b). False. A has t. have n linearly independent eigenvector
(c). Truce. Their, is a theorem saying that if λ_{1}, λ_{i} are $\quad \because$...... distinct eiganialus with v_{1}, v_{2} as corresponding sizer vector), then $\left\{v_{1}, v_{2}\right\}$ is a linearly indeperstect sat.
(d) False! See exercise 4 for a counterexample.

Exercise 2. Let T be defined by $T(\mathbf{x})=A \mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-3 & 4
\end{array}\right]
$$

$$
\begin{aligned}
& \text { By Tum " } 8 \text {, if we write } A=P D P^{-1} \text {, anklet } \beta \text { be the column of } \mathrm{H} \\
& \text { then }[T]_{\rho} \text { "demand. We fart fart the eigenales of } A \text { : } \\
& \left|\begin{array}{ll}
-\lambda & 1 \\
-3 & 4-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)=0 \text {. s. } \lambda=3,1 \text {. We nee find th cisconpere; } \\
& \lambda=1 \text {. We firm the ours pere it A-I1: }\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
-3 & 3 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cc|c}
4 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
1
\end{array}\right]: X_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& x=3 \text { similesly, we solve }\left[\begin{array}{ccc}
-3 & 1 & 0 \\
-3 & 1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{cccc}
1 & -\frac{1}{3} & 0 \\
0 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{cc}
1 / 3 \\
1
\end{array}\right] \\
& \text { no } A=P O P^{-1} \text { where } P=\left[\begin{array}{cc}
1 & 1 / 3 \\
1 & 1
\end{array}\right], D=\left[\begin{array}{cc}
10 & 0 \\
0 & 3
\end{array}\right] \text { So } B=\left\{[1],\left[\begin{array}{cc}
1 / 1 / \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Exercise 3. (a) As a group, discuss why it is useful to be able to diagonalize a matrix!
(b) If possible, diagonalize the following matrix:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]} \\
& \text { (b) We first find cigenvolus and eigen vectors. } \\
& \text { To find eigenvalueri we solve tho characteristic equation } \\
& \left|\begin{array}{cc}
3-\lambda & -1 \\
1 & 5-\lambda
\end{array}\right|=\lambda^{2}-8 \lambda+15+1=(\lambda-4)^{2} . \quad \text { So } \lambda=4 \text { is the only } \\
& \text { eigen value. We now find the eigenspose by finding } \\
& \text { solution to }\left[\begin{array}{cc}
3 & -4 \\
1 & -1 \\
1 & 5-\lambda
\end{array}\right] \vec{y}=0 \Rightarrow\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \text { So The eizoospare is span }\left(\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right) \text {. Since there is only } \\
& \text { ore eigenspare, and it it are dimessionon, this matrix }
\end{aligned}
$$

Exercise 4. The eigenvalues of A are 2 and 8 . Use this information to diagonalize A :

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right]
$$

In order to diagondize A, we need to find ergenspnces corresponding to each eigenvector.
$\lambda=2$. The eizerspace it solution t. $\left[\begin{array}{ccc}4-2 & 2 & 6 \\ 2 & 4-2 & 2 \\ 2 & 2 & 4-2\end{array}\right] \vec{x}=\overrightarrow{0}$
$\left[\begin{array}{lll|l}2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 0 \\ 2 & 2 & 2 & 0\end{array}\right] \rightarrow\left[\begin{array}{lll|l}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad$ s, the solutions ar $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$

$\left[\begin{array}{ccc|c}-4 & 2 & 2 & : \\ 2 & -4 & 2 & 0 \\ 2 & 2 & -4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

$$
\text { so the solution e are }\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

So we have the following linearly independent set of 3 eigenvetedoiss

$$
\left\{\left[\begin{array}{r}
i \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
i
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\} \text { with } 2 \text { correl posing eizer value }\{2,2,9\}
$$

$$
\text { So usingthm } 5 \text { on pg } 284, \quad A=P D P^{-1} \text { when } P=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 1 & 1 \\
0 & 1
\end{array}\right], D=\left[\begin{array}{ccc}
2 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right]
$$

Exercise 5. Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}$ be a bisis for a vector space V and $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation such that:

$$
T\left(x_{1} \mathbf{b}_{\mathbf{1}}+x_{2} \mathbf{b}_{\mathbf{2}}+x_{3} \mathbf{b}_{\mathbf{3}}\right)=\left[\begin{array}{c}
2 x_{1}-4 x_{2}+5 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^{2}.
Proof. Let \mathcal{E} denote the standard basis for \mathbb{R}^{2}. The formula for the matrix ${ }_{\mathcal{E}}[T]_{\mathcal{B}}$ is

$$
\left[\left[T\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{E}} \quad\left[T\left(\mathbf{b}_{\mathbf{2}}\right)\right]_{\mathcal{E}} \quad\left[T\left(\mathbf{b}_{\mathbf{3}}\right)\right]_{\mathcal{E}}\right]
$$

. We compute each column individually:
$T\left(\mathbf{b}_{\mathbf{1}}\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right]$, which is already in standard basis coordinates.
$T\left(\mathbf{b}_{\mathbf{2}}\right)=\left[\begin{array}{l}-4 \\ -1\end{array}\right]$, which is already in standard basis coordinates.
$T\left(\mathbf{b}_{\mathbf{3}}\right)=\left[\begin{array}{l}5 \\ 3\end{array}\right]$, which is already in standard basis coordinates.

So our final matrix is $\left[\begin{array}{lll}2 & -4 & 5 \\ 0 & -1 & 3\end{array}\right]$

