Worksheet 13

Sections 207 and 219 MATH 54

March 7, 2019

Exercise 1. Mark each statement True or False. Justify each answer. For these problems, A, B are $n \times n$ matrices.

- (a) If A, B are row equivalent, then they have the same eigenvalues.
- (b) If A has n eigenvectors, A is diagonalizable.
- (c) If A has n distinct eigenvalues, it is diagonalizable.
- (d) If A is diagonalizable, then A has n distinct eigenvalues
- (c) If A has n distinct eigenvalues, it is diagonalizable.

A1.

(d) False! See exercise 4 for a counterexample.

Exercise 2. Let T be defined by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$A = \begin{bmatrix} 0 & 1 \\ -3 & 4 \end{bmatrix}$$

By Thm, 8, if we write
$$A = PDP^{-1}$$
, and let B be the columns of P,
then [T]p is diagonal. We first find the eigenvalues of A:
 $\begin{vmatrix} -\lambda & i \\ -3 & i + \lambda \end{vmatrix} = \lambda^{n} - 4\lambda + 3 = (\lambda - 3)(\lambda - 1) = 0$. So $\lambda = 3, 1$. We now find the eigenspaces;
 $\lambda = 1$. We find the diverspace of A-II: $\begin{bmatrix} -1 & i \\ -3 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \times 2 \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} -1 & i \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \times 2 \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix}$

Exercise 3. (a) As a group, discuss why it is useful to be able to diagonalize a matrix!(b) If possible, diagonalize the following matrix:

-

$$\begin{bmatrix} 3 & -1 \\ 1 & 5 \end{bmatrix}$$

-4

(b) We first Rind eigenvalues and eigenvectors.
To find eigenvalues, we solve the characteristic equation

$$\begin{vmatrix} 3-x & -1 \\ 1 & 5-x \end{vmatrix} = \lambda^2 \cdot 8\lambda + 15 + 1 = (\lambda - 4)^2$$
. So $\lambda = 4$ is the only
eigenvalue. We now find the eigenspace by finding
solutions to $\begin{vmatrix} 3-4 & -1 \\ 1 & 5-x \end{vmatrix} \stackrel{\checkmark}{=} 0 \implies \begin{vmatrix} -1 & -1 \\ 1 & 1 \end{vmatrix} \stackrel{\circlearrowright}{=} 0 = 0$
So The eigenspace is $(\text{span}(\begin{bmatrix} 1 \\ -1 \end{bmatrix}))$. Since there is only
one eigenspace, and it is are dimensional, this matrix

Exercise 4. The eigenvalues of A are 2 and 8. Use this information to diagonalize A:

$$A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$$

In order to diagonalize A, we need to Rind eigenspaces
corresponding to each eigenvector.

$$X=2$$
: The eigenspace is soluhians to $\begin{bmatrix} 4-2 & 2 & 2 \\ 2 & 4-2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 $X=9$: The eigenspace is colutions to $\begin{bmatrix} 4-2 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
 $\begin{bmatrix} -4 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
So the solutions to $\begin{bmatrix} 4-2 & 2 & 2 \\ 2 & 2 & 4+2 \end{bmatrix} = 0$
So the solutions Are $\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = x_{1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$
So we have the following linearly independent set of 3 eigenvelocitors
 $\begin{bmatrix} [1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix}$ with 2 corresponding eigenvalue $\{ 2, 2, 9 \}$
So using the 5 on pg 2844, A=PD P⁻¹ where $P = \begin{bmatrix} -1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 2 & 0 \\ 0 & 0 & 8 \end{bmatrix}$

Exercise 5. Let $\mathcal{B} = {\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}}$ be a bisis for a vector space V and $T : V \to \mathbb{R}^2$ be a linear transformation such that:

$$T(x_1\mathbf{b_1} + x_2\mathbf{b_2} + x_3\mathbf{b_3}) = \begin{bmatrix} 2x_1 - 4x_2 + 5x_3 \\ -x_2 + 3x_3 \end{bmatrix}$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^2 .

Proof. Let \mathcal{E} denote the standard basis for \mathbb{R}^2 . The formula for the matrix $_{\mathcal{E}}[T]_{\mathcal{B}}$ is

 $\begin{bmatrix} [T(\mathbf{b_1})]_{\mathcal{E}} & [T(\mathbf{b_2})]_{\mathcal{E}} & [T(\mathbf{b_3})]_{\mathcal{E}} \end{bmatrix}$

. We compute each column individually:

$$T(\mathbf{b_1}) = \begin{bmatrix} 2\\0 \end{bmatrix}$$
, which is already in standard basis coordinates.
 $T(\mathbf{b_2}) = \begin{bmatrix} -4\\-1 \end{bmatrix}$, which is already in standard basis coordinates.
 $T(\mathbf{b_3}) = \begin{bmatrix} 5\\3 \end{bmatrix}$, which is already in standard basis coordinates.

So our final matrix is $\begin{bmatrix} 2 & -4 & 5 \\ 0 & -1 & 3 \end{bmatrix}$