Worksheet 13

Sections 207 and 219
 MATH 54

March 7, 2019
Exercise 1. Mark each statement True or False. Justify each answer. For these problems, A, B are $n \times n$ matrices.
(a) If A, B are row equivalent, then they have the same eigenvalues.
(b) If A has n eigenvectors, A is diagonalizable.
(c) If A has n distinct eigenvalues, it is diagonalizable.
(d) If A is diagonalizable, then A has n distinct eigenvalues

Exercise 2. Let T be defined by $T(\mathbf{x})=A \mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-3 & 4
\end{array}\right]
$$

Exercise 3. (a) As a group, discuss why it is useful to be able to diagonalize a matrix!
(b) If possible, diagonalize the following matrix:

$$
\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]
$$

Exercise 4. The eigenvalues of A are 2 and 8 . Use this information to diagonalize A :

$$
A=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 4 & 2 \\
2 & 2 & 4
\end{array}\right]
$$

Exercise 5. Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}, \mathbf{b}_{\mathbf{3}}\right\}$ be a bisis for a vector space V and $T: V \rightarrow \mathbb{R}^{2}$ be a linear transformation such that:

$$
T\left(x_{1} \mathbf{b}_{\mathbf{1}}+x_{2} \mathbf{b}_{\mathbf{2}}+x_{3} \mathbf{b}_{\mathbf{3}}\right)=\left[\begin{array}{c}
2 x_{1}-4 x_{2}+5 x_{3} \\
-x_{2}+3 x_{3}
\end{array}\right]
$$

Find the matrix for T relative to \mathcal{B} and the standard basis for \mathbb{R}^{2}.

