Worksheet 12

Sections 207 and 319 MATH 54

March 5, 2018

Exercise 1. (a) As a group, discuss the definitions of eigenvector and eigenvalue. Draw pictures!

(b) Is
$$\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7\\ 3 & 3 & 7\\ 5 & 6 & 5 \end{bmatrix}$? If so, find the eigenvalue.
(c) Is $\lambda = 3$ an eigenvalue of $\begin{bmatrix} 1 & 2 & 2\\ 3 & -2 & 1\\ 0 & 1 & 1 \end{bmatrix}$.
(b) To check if x is an eigenvector of A, we check to see if $Ax = \lambda x$ for some scalar λ . In this case:
 $\begin{bmatrix} 1 & 2 & 2\\ 3 & -2 & 1\\ 0 & 1 & 1 \end{bmatrix}$.
(b) To check if x is an eigenvector of A, we check to see if $Ax = \lambda x$ for some scalar λ . In this case:
 $\begin{bmatrix} 1 & 2 & 2\\ 3 & -2 & 1\\ 0 & 1 & 1 \end{bmatrix}$.
(c) To check if x is an eigenvector of A, we check to see if $Ax = \lambda x$ for some scalar λ . In this case:
 $\begin{bmatrix} 1 & 2 & 2\\ 3 & -2 & 1\\ 0 & 1 & 1 \end{bmatrix}$.
(c) $Ax = 3$, x has a nontrivial solution. This reference is to any operated network if the contemposities is an eigenvector of $Ax = 3$, x has a nontrivial solution. This reference is to any operated network if $\begin{bmatrix} -1 & 1 & 2\\ 3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2\\ 0 & 0 \end{bmatrix}$ is an eigenvalue of A if and only if the contemposities $\begin{bmatrix} -1 & 1 & 2\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix}$ is an eigenvalue of A if and only if the contemposities $x = -2$.
(c) $Ax = 3$, x has a nontrivial solution. This reference is a substant with $x = 0$, we check if this has realized in the order with $x = -2$.
(c) $\begin{bmatrix} -1 & 1 & 0\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0\\ 0 & 0 \end{bmatrix}$ is an eigenvalue.

Exercise 2. Find a basis for the eigenspace corresponding to each listed eigenvalue.

$$A = \begin{bmatrix} 10 & -9\\ 4 & -2 \end{bmatrix} \qquad \lambda = 4$$

To find the eigenspace, we find the solution set of
$$(A - \lambda I) X = 1$$

 $\begin{bmatrix} 6 & -9 & 0 \\ 4 & -6 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -3 & 0 \\ 4 & -6 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
So the solutions are $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x \begin{bmatrix} y_2 \\ 1 \end{bmatrix}$.
So $\{\begin{bmatrix} 3/2 \\ 1 \end{bmatrix}\}$ forms an eigenbox
for the χ -th eigenpace.

Exercise 3. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.

The eigenvalues of an non matrix is exactly the set
of roots of the characteristic polynomial,
$$[det(A - AI) = 0]$$
.
By thinking about how catactor expansion works, Y^{an}
can see that this will always be a degree n polynomial,
which can have at most n distinct roots.

Exercise 4. Find the characteristic polynomial and the eigenvalues for the matrix.

$$\begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$$

The characteristic polynomial of a matrix A is
det (A-
$$\lambda$$
I)=0. So we need to find
det $\left(\begin{bmatrix} s & -2 & 3 \\ -2 & 0 \\ -6 & 7 & -2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}\right) = \begin{bmatrix} 5-\lambda & -2 & 3 \\ 0 & 1-\lambda & 0 \\ -6 & 7 & -2-\lambda \end{bmatrix}$
Since the middle row is almost all zeros, its ensient
to do cofactor expansion on this row:
 $\begin{vmatrix} s-\lambda & -2 & 3 \\ 0 & 1-\lambda & 0 \\ -6 & 7 & -2-\lambda \end{vmatrix} = -0 \begin{vmatrix} -2 & 3 \\ 7-2 & \lambda \end{vmatrix} + (1-\lambda) \begin{vmatrix} 5-\lambda & 3 \\ 6 & -2-\lambda \end{vmatrix} = -0 \begin{vmatrix} 5-\lambda & -2 \\ 6 & 7 \end{vmatrix}$
 $= (1-\lambda) \left[(5-\lambda)(-2-\lambda) - 18 \right] = (1-\lambda) (\lambda^2 - 3\lambda - 10 - 18) =$
 $(1-\lambda) (\lambda^2 - 3\lambda - 28) = (1-\lambda)(\lambda - 7)(\lambda + 4)$
So the characteristic polynomial is $(1-\lambda)(\lambda - 7)(\lambda + 4) = 0$
and the eigenvalues are $\lambda = 1$, $\lambda = 7$, $\lambda = -4$.

Exercise 5. For each of the following matrices, describe in geometric terms the real eigenspaces (if any) and their associated eigenvalues. Do not compute the matrices.

- (a) The matrix induced by the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ which reflects each vector across the z-axis.
- (b) The matrix induced by the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates each vector by $\pi/4$ radians counterclockwise.

For each of these parts, think about which vectors are scaled by T, or in other words "don't change angle" with the origin.
(a) The = axis is an elaphipare with eigenvalue 1, since vectors on the 2-axis are not affected by the transformation.
-The x-y plane is an eigenspace with eigenvalue -1, since (x,y,0) is sent to. (-x,-yp).
(b). Thes are no real eigenspaces since no vector is scaled by the transformtran.

4