Worksheet 12

Sections 207 and 319 MATH 54

March 5, 2018

Exercise 1. (a) As a group, discuss the definitions of eigenvector and eigenvalue. Draw pictures!

(b) Is
$$\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$
 an eigenvector of $\begin{bmatrix} 3 & 6 & 7\\ 3 & 3 & 7\\ 5 & 6 & 5 \end{bmatrix}$? If so, find the eigenvalue.
(c) Is $\lambda = 3$ an eigenvalue of $\begin{bmatrix} 1 & 2 & 2\\ 3 & -2 & 1\\ 0 & 1 & 1 \end{bmatrix}$.

Exercise 2. Find a basis for the eigenspace corresponding to each listed eigenvalue.

$$A = \begin{bmatrix} 10 & -9\\ 4 & -2 \end{bmatrix} \qquad \lambda = 4$$

Exercise 3. Explain why a 2×2 matrix can have at most two distinct eigenvalues. Explain why an $n \times n$ matrix can have at most n distinct eigenvalues.

Exercise 4. Find the characteristic polynomial and the eigenvalues for the matrix.

$$\begin{bmatrix} 5 & -2 & 3 \\ 0 & 1 & 0 \\ 6 & 7 & -2 \end{bmatrix}$$

Exercise 5. For each of the following matrices, describe in geometric terms the real eigenspaces (if any) and their associated eigenvalues. Do not compute the matrices.

- (a) The matrix induced by the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ which reflects each vector across the z-axis.
- (b) The matrix induced by the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates each vector by $\pi/4$ radians counterclockwise.