Worksheet 11

Sections 207 and 219 MATH 54

February 28, 2018

Exercise 1. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\beta}$ and the given basis β .

$$\beta = \left\{ \begin{bmatrix} 4\\5 \end{bmatrix}, \begin{bmatrix} 6\\7 \end{bmatrix} \right\} \qquad \qquad [\mathbf{x}]_{\beta} = \begin{bmatrix} 8\\-5 \end{bmatrix}$$

Exercise 2. Find the coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} relative to the given basis β .

$\beta = \left\{ \begin{bmatrix} 1\\ -3 \end{bmatrix}, \begin{bmatrix} 2\\ -5 \end{bmatrix} \right\}$	$\mathbf{x} = \begin{bmatrix} -2\\1 \end{bmatrix}$
---	--

Exercise 3. Let $\mathcal{A} = \{\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}\}$ and $\mathcal{D} = \{\mathbf{d_1}, \mathbf{d_2}, \mathbf{d_3}\}$ be bases for a vector space V, and let $P = [[\mathbf{d_1}]_{\mathcal{A}}, [\mathbf{d_2}]_{\mathcal{A}}, [\mathbf{d_3}]_{\mathcal{A}}]$. Which of the following equations is true for all \mathbf{x} in V?

(a) $[\mathbf{x}]_{\mathcal{A}} = P[\mathbf{x}]_{\mathcal{D}}$ (b) $[\mathbf{x}]_{\mathcal{D}} = P[\mathbf{x}]_{\mathcal{A}}$

Exercise 4. Let $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$ and $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}\}$ be bases for \mathbb{R}^2 . Compute the change of coordinate matrix from \mathcal{C} to \mathcal{B} .

$$b_1 = \begin{bmatrix} 7\\5 \end{bmatrix}, b_2 = \begin{bmatrix} -3\\-1 \end{bmatrix}, c_1 = \begin{bmatrix} 1\\-5 \end{bmatrix}, c_2 = \begin{bmatrix} -2\\2 \end{bmatrix}$$

Exercise 5. Mark each statement True or False. Justify each answer.

- (a) The columns of $P_{\mathcal{C}\leftarrow\mathcal{B}}$ are linearly independent.
- (b) If $V = \mathbb{R}^2$, $\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$, and $\mathcal{C} = \{\mathbf{c_1}, \mathbf{c_2}\}$, then row reduction of $[\mathbf{c_1}c_2b_1b_2]$ to [IP] yields a matrix P that satisfies $[\mathbf{x}]_{\mathcal{B}} = P[\mathbf{x}]_C$ for all \mathbf{x} in V.

Exercise 6. In \mathbb{P}_2 , find the change-of-coordinates matrix from the standard basis to the basis $\mathcal{B} = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$. Then write t^2 as a linear combination of the polynomials in \mathcal{B} .