Worksheet 11

Sections 207 and 219
 MATH 54

February 28, 2018
Exercise 1. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\beta}$ and the given basis β.

$$
\beta=\left\{\left[\begin{array}{l}
4 \\
5
\end{array}\right],\left[\begin{array}{l}
6 \\
7
\end{array}\right]\right\} \quad[\mathbf{x}]_{\beta}=\left[\begin{array}{c}
8 \\
-5
\end{array}\right]
$$

Exercise 2. Find the coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} relative to the given basis β.

$$
\beta=\left\{\left[\begin{array}{c}
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
2 \\
-5
\end{array}\right]\right\} \quad \mathbf{x}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Exercise 3. Let $\mathcal{A}=\left\{\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}\right\}$ and $\mathcal{D}=\left\{\mathbf{d}_{\mathbf{1}}, \mathbf{d}_{\mathbf{2}}, \mathbf{d}_{\mathbf{3}}\right\}$ be bases for a vector space V, and let $P=\left[\left[\mathbf{d}_{\mathbf{1}}\right]_{\mathcal{A}},\left[\mathbf{d}_{\mathbf{2}}\right]_{\mathcal{A}},\left[\mathbf{d}_{\mathbf{3}}\right]_{\mathcal{A}}\right]$. Which of the following equations is true for all \mathbf{x} in V ?
(a) $[\mathbf{x}]_{\mathcal{A}}=P[\mathbf{x}]_{\mathcal{D}}$
(b) $[\mathbf{x}]_{\mathcal{D}}=P[\mathbf{x}]_{\mathcal{A}}$

Exercise 4. Let $\mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right\}$ be bases for \mathbb{R}^{2}. Compute the change of coordinate matrix from \mathcal{C} to \mathcal{B}.

$$
b_{1}=\left[\begin{array}{l}
7 \\
5
\end{array}\right], b_{2}=\left[\begin{array}{l}
-3 \\
-1
\end{array}\right], c_{1}=\left[\begin{array}{c}
1 \\
-5
\end{array}\right], c_{2}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right]
$$

Exercise 5. Mark each statement True or False. Justify each answer.
(a) The columns of $P_{\mathcal{C} \leftarrow \mathcal{B}}$ are linearly independent.
(b) If $V=\mathbb{R}^{2}, \mathcal{B}=\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$, and $\mathcal{C}=\left\{\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\boldsymbol{2}}\right\}$, then row reduction of $\left[\mathbf{c}_{\mathbf{1}} c_{2} b_{1} b_{2}\right]$ to $[I P]$ yields a matrix P that satisfies $[\mathbf{x}]_{\mathcal{B}}=P[\mathbf{x}]_{C}$ for all \mathbf{x} in V.

Exercise 6. In \mathbb{P}_{2}, find the change-of-coordinates matrix from the standared basis to the basis $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+2 t\right\}$. Then write t^{2} as a linear combination of the polynomials in \mathcal{B}.

