Worksheet 10

Sections 207 and 219 MATH 54

February 26, 2019

Exercise 1. Assume that A is row equivalent to B. Find a basis for the space spanned by the columns of A.

	[1	2	-5	11	3]		Γ1	2	0	4	5]
A =	2	4	-5	15	2	D	0	0	5	-7	8
	1	2	0	4	5	B =	0	0	0	0	-9
	3	6	-5	19	-2		0	0	0	0	0

Exercise 2. True or false? Give brief justifications.

- (a) A linearly independent set in a subspace H is a basis for H.
- (b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
- (c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of col A.
- (d) Every plane in \mathbb{R}^3 is isomorphic to \mathbb{R}^2 .
- (e) The vector spaces \mathbb{P}_2 and \mathbb{R}^3 are isomorphic.

Exercise 3. Find a basis for the set of vectors in \mathbb{R}^3 on the plane x + 2y + z = 0.

Exercise 4. Using facts that we learned in chapter 1 and 2, explain why a basis of \mathbb{R}^n must contain exactly n vectors.

Exercise 5. Let $T: V \to W$ be a linear transformation. Shot that if $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is linearly dependent V, then $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_p})\}$ is linearly dependent in W. Use this to show that if $\{T(\mathbf{v_1}), \ldots, T(\mathbf{v_p})\}$ is linearly independent in W, then $\{\mathbf{v_1}, \ldots, \mathbf{v_p}\}$ is linearly independent in V.