Worksheet 10

Sections 207 and 219
 MATH 54

February 26, 2019
Exercise 1. Assume that A is row equivalent to B. Find a basis for the space spanned by the columns of A.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & -5 & 11 & 3 \\
2 & 4 & -5 & 15 & 2 \\
1 & 2 & 0 & 4 & 5 \\
3 & 6 & -5 & 19 & -2
\end{array}\right] \quad B=\left[\begin{array}{ccccc}
1 & 2 & 0 & 4 & 5 \\
0 & 0 & 5 & -7 & 8 \\
0 & 0 & 0 & 0 & -9 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 2. True or false? Give brief justifications.
(a) A linearly independent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subsets of S is a basis of V.
(c) If B is an echelon form of a matrix A, the pivot columns of B for a basis of $\operatorname{col} A$.
(d) Every plane in \mathbb{R}^{3} is isomorphic to \mathbb{R}^{2}.
(e) The vector spaces \mathbb{P}_{2} and \mathbb{R}^{3} are isomorphic.

Exercise 3. Find a basis for the set of vectors in \mathbb{R}^{3} on the plane $x+2 y+z=0$.
Exercise 4. Using facts that we learned in chapter 1 and 2 , explain why a basis of \mathbb{R}^{n} must contain exactly n vectors.
Exercise 5. Let $T: V \rightarrow W$ be a linear transformation. Shot that if $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly dependent V, then $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{p}}\right)\right\}$ is linearly dependent in W. Use this to show that if $\left\{T\left(\mathbf{v}_{\mathbf{1}}\right), \ldots, T\left(\mathbf{v}_{\mathbf{p}}\right)\right\}$ is linearly independent in W, then $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ is linearly independent in V.

