Worksheet 1

Sections 207 and 219
 MATH 54

Jan 21, 2019

Exercise 1. For each augmented matrix, write a corresponding system of linear equations. Can you tell (without doing any calculations) that one of these systems has no solutions?

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 3 & 2 & 2 \\
0 & 0 & 1 & 3
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 0 & 0 & 4 \\
0 & 0 & 3 & 5 \\
0 & 0 & 0 & 6
\end{array}\right]
$$

Exercise 2. Write each of the following systems as an augmented matrix. Then, solve each system.

- $x_{1}+5 x_{2}=3, \quad x_{1}-x_{2}=-3$
- $x-2 y=4, \quad-3 x+6 y=-12$
- $x-2 y=4,-3 x+6 y=5$
- $x_{1}-3 x_{2}=5, \quad-x_{1}+x_{2}+5 x_{3}=2, \quad x_{2}+x_{3}=0$

Exercise 3. If possible, compute each of $3 C-E, C B, E B$. If any of these computations are impossible, briefly explain why.

$$
B=\left[\begin{array}{ccc}
7 & -5 & 1 \\
1 & -4 & -3
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right] \quad E=\left[\begin{array}{c}
-5 \\
3
\end{array}\right]
$$

Exercise 4. If a matrix B is 5×3 and the product $A B$ is 2×3, what is the size of A ? (For an $m \times n$ matrix, m is the number of rows and n is the number of columns.)

Exercise 5. (bonus problem!) Show that the following equation holds:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}\left[\begin{array}{l}
a \\
d \\
g
\end{array}\right]+x_{2}\left[\begin{array}{l}
b \\
e \\
h
\end{array}\right]+x_{3}\left[\begin{array}{l}
c \\
f \\
i
\end{array}\right]
$$

The fact that multiplying a matrix by a vector gives a weighted sum of the columns of the matrix will be useful later! Don't worry too much if this problem doesn't make too much sense right now.

