Worksheet 1

Sections 207 and 219 MATH 54

Jan 21, 2019

Exercise 1. For each augmented matrix, write a corresponding system of linear equations. Can you tell (without doing any calculations) that one of these systems has no solutions?

[1	0	0	2]	Γ	0	1	0	1	[1	0	0	4
$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	3	-	1	3	2	2				5
0	0	1	0	L	0	0	1	3	0	0	0	6

Exercise 2. Write each of the following systems as an augmented matrix. Then, solve each system.

- $x_1 + 5x_2 = 3$, $x_1 x_2 = -3$
- x 2y = 4, -3x + 6y = -12
- x 2y = 4, -3x + 6y = 5
- $x_1 3x_2 = 5$, $-x_1 + x_2 + 5x_3 = 2$, $x_2 + x_3 = 0$

Exercise 3. If possible, compute each of 3C - E, CB, EB. If any of these computations are impossible, briefly explain why.

$$B = \begin{bmatrix} 7 & -5 & 1 \\ 1 & -4 & -3 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \qquad E = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$$

Exercise 4. If a matrix B is 5×3 and the product AB is 2×3 , what is the size of A? (For an $m \times n$ matrix, m is the number of rows and n is the number of columns.)

Exercise 5. (bonus problem!) Show that the following equation holds:

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} a \\ d \\ g \end{bmatrix} + x_2 \begin{bmatrix} b \\ e \\ h \end{bmatrix} + x_3 \begin{bmatrix} c \\ f \\ i \end{bmatrix}$$

The fact that multiplying a matrix by a vector gives a weighted sum of the columns of the matrix will be useful later! Don't worry too much if this problem doesn't make too much sense right now.