Worksheet 4.4

Max's Lecture MATH 55

July 8, 2019

Exercise A. 1. How many solutions does $3x \equiv 1 \pmod{6}$ have?

- 2. How many solutions does $3x \equiv 0 \pmod{6}$ have? How many solutions does this have with $0 \le x < 6$?
- 3. How many solutions does $5x \equiv 1 \pmod{6}$? How many solutions does it have with $0 \le x < 6$?
- 4. Make a conjection on what conditions you can put on a such that $ax \equiv b \pmod{m}$ has what we call a unique solution mod m. This means there is is exactly one solution such that $0 \leq x < m$ and all other solutions are congruent to this solution $\mod m$.

Exercise B. What is the inverse of 101 mod 4620?

Exercise C. Solve the following congruences:

- 1. $101x \equiv 2 \pmod{4620}$
- 2. $3x \equiv 4 \pmod{7}$

Exercise D (from ancient texts). Solve the system of congruences:

$$x \equiv 2(\mod 3)$$
$$x \equiv 3(\mod 5)$$
$$x \equiv 2(\mod 7)$$

Exercise E. Compute $7^{222} \mod 11$

Exercise F (4.4.19). This exercise outlines a proof of Fermats little theorem

- 1. Suppose that a is not divisible by the prime p. Show that no two integers $1a, 2a, \ldots, (p-1)a$ are congruent modululo p.
- 2. Conclude from part (a) that the product of $1, 2, \ldots p-1$ is congruent modulo p to the product of $1a, \ldots (p-1)a$. Use this to show that

$$(p-1)! \equiv a^{p-1}(p-1)! \pmod{p}$$

- 3. Use theorem 7 from 4.3(the theorem that says you can divide both sides by a product that is relatively prime to the modulus) to show that $a^{p-1} \equiv 1 \pmod{p}$.
- 4. Now show that $a^p \equiv a \pmod{p}$ for all integers a.