Worksheet 4.4

Max's Lecture
MATH 55

July 8, 2019
Exercise A . 1. How many solutions does $3 x \equiv 1(\bmod 6)$ have?
2. How many solutions does $3 x \equiv 0(\bmod 6)$ have? How many solutions does this have with $0 \leq x<6$?
3. How many solutions does $5 x \equiv 1(\bmod 6)$? How many solutions does it have with $0 \leq x<6$?
4. Make a conjection on what conditions you can put on a such that $a x \equiv b(\bmod m)$ has what we call a unique solution mod m. This means there is is exactly one solution such that $0 \leq x<m$ and all other solutions are congruent to this solution $\bmod m$.

Exercise B. What is the inverse of $101 \bmod 4620 ?$

Exercise C. Solve the following congruences:

1. $101 x \equiv 2(\bmod 4620)$
2. $3 x \equiv 4(\bmod 7)$

Exercise D (from ancient texts). Solve the system of congruences:

$$
\begin{aligned}
x & \equiv 2(\quad \bmod 3) \\
x & \equiv 3(\bmod 5) \\
x & \equiv 2(\quad \bmod 7)
\end{aligned}
$$

Exercise E. Compute $7^{222} \bmod 11$

Exercise F (4.4.19). This exercise outlines a proof of Fermats little theorem

1. Suppose that a is not divisible by the prime p. Show that no two integers $1 a, 2 a, \ldots,(p-$ 1) a are congruent modululo p.
2. Conclude from part (a) that the product of $1,2, \ldots p-1$ is congruent modulo p to the product of $1 a, \ldots(p-1) a$. Use this to show that

$$
(p-1)!\equiv a^{p-1}(p-1)!(\quad \bmod p)
$$

3. Use theorem 7 from 4.3 (the theorem that says you can divide both sides by a product that is relatively prime to the modulus) to show that $a^{p-1} \equiv 1(\bmod p)$.
4. Now show that $a^{p} \equiv a(\bmod p)$ for all integers a.
