Worksheet 4.3

Max's Lecture
MATH 55

July 5, 2019

Exercise A (from charles). 1. Express 74 in base 2. Express 27 in hexidecimal.
2. Convert the binary number 10101 to base 4 . Do the same for base 8 . Can you guess a pattern?

Exercise B. Suppose that an integer is expressed in the standard decimal notation. How can you tell whether the number is divisible by 3 ? Why does your rule work?

Exercise C. Determine whether 101 is a prime number.

Exercise D. Suppose you know the prime factorizations of two positive integers a and b. How can you find their gcd and their 1 cm . What is the product of $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$?

Exercise E. Compute the gcd of 54 and 114 using the euclidean algorithm.

Exercise F. Use lemma 2 to prove the following, where a, b, c, m are positive integers and p is a prime:

1. If $p \mid a b$, then p must divide a or b.
2. If $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$
