Worksheet 4.1 and 4.2

Max's Lecture
MATH 54

July 2, 2019
Exercise A (from Charles). Let a, b, c be integers. If $a \mid b c$, is it the case that a must divide b or c ?

Exercise B(from Ritvik). Prove that if a is any integer other than 0 , can you think of a number that divides a ? Can you think of a number that a must divide?

Exercise C. What are the quotient and remainder when 11 is divided by 4 ? What if -25 is divided by 4 ?

Exercise D. 4.1.21,22 Let m be a positive integer. Prove the following:

1. Let m be a positive integer. Show that $a \equiv b(\bmod m)$ if $a \bmod m=b \bmod m$.
2. Show that $a \bmod m=b \bmod m$ if $a \equiv b(\bmod m)$.

Together, these two prove Theroem 2 in section 4.1

Exercise E (4.1.45). Show that if m is a positive integer of the form $4 k+3$ for some nonnegative integer k, then m is not the sum of the squares of two integers.

Exercise F. Are the following true? Prove or disprove. In all cases, a, b, c, d are integers, and m is a positive integer.

1. If $a c \equiv b c(\bmod m)$ then $a \equiv b(\bmod m)$.
2. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a^{c} \equiv b^{d}(\bmod m)$.

Exercise G. Try doing the following computations without using a calculator:

1. $6^{81} \bmod 7$
2. $3^{18} \bmod 5$

Exercise H (from charles). 1. Express 74 in base 2. Express 27 in hexidecimal.
2. Convert the binary number 10101 to base 4 . Do the same for base 8. Can you guess a pattern?

Exercise I. Suppose that an integer is expressed in the standard decimal notation. How can you tell whether the number is divisible by 3 ? Why does your rule work?

