Worksheet 7.4 and 8.1

Max's Lecture
MATH 55

July 23, 2019
Exercise A. 1. What is the variance of the random variable X with $X(t)=1$ if Bernoulli trial is a sucess and and $X(t)=0$ is the Bernoulli trial is a failure, where p is the probability of success and q is the probability of failure?
2. Use the above to find the variance of the number of successes in scenario 1 of exercise D.

Exercise B. You do 100 bernoulli trials (with the chance of success being $1 / 2$ for each trial). The random variable X records the number of successes. What is the expected value of X ? Give an upper bound on the probability that $X(s)$ differs from the expected value by at least 25 ?
(NOTE: the question was phrased incorrectly on the version that I handed out in class, I want an upper bound on the probability, not the actual probability)

Exercise F. ind a recurrence relation for the following counting scenarios:

1. The number of bit strings of length n that have a pair of consecutive zeros.
2. The number of ways to tile an $n \times 2$ board using dominos.
3. C_{n}, where C_{n} is the number of ways to parenthesize the product of $n+1$ numbers, $x_{0}, x_{1}, \ldots x_{n}$, to specify the order of multiplication. For example, $C_{3}=5$ because we can write: $\left(\left(x_{0} \cdot x_{1}\right) \cdot x_{2}\right) \cdot x_{3}, \quad\left(x_{0} \cdot\left(x_{1} \cdot x_{2}\right)\right) \cdot x_{3}, \quad\left(x_{0} \cdot x_{1}\right) \cdot\left(x_{2} \cdot x_{3}\right)$, $x_{0} \cdot\left(\left(x_{1} \cdot x_{2}\right) \cdot x_{3}\right)$, and $x_{0} \cdot\left(x_{1} \cdot\left(x_{2} \cdot x_{3}\right)\right)$
