Math N55– Practice Final Discrete Mathematics

Instructor: Max Hlavacek

Aug 12, 2019

Name: ______ Student Number: ____

This exam contains 9 pages (including this cover page) and 7 questions. Total of points is 50. Good luck !

Distribution of Marks

Points	Score
9	
9	
10	
6	
6	
5	
5	
50	
	9 9 10 6 5 5 5

- 1. If possible for each of the following give an example. If none exist, explain why.
 - (a) (3 points) A connected graph with 9 vertices and 7 edges.

(b) (3 points) A bipartite graph with 15 edges.

(c) (3 points) A simple graph that has chromatic number greater than 4.

- 2. Give the cardinality of the following sets. If the cardinality is infinite specify whether countably or uncountably infinite. Justify your answers.
 - (a) (3 points) The set of reflexive relations on a set of n elements

(b) (3 points) The set of regions in a planar graph with 4 vertices each of degree two.

(c) (3 points) The set of solutions to the recurrence $a_n = 2a_{n-1} + 6a_{n-2}$

3. Let G be the graph shown below:

(a) (4 points) Show that G does not have a subgraph homeomorphic to K_5 . Hint: Consider the vertex degrees.

(b) (3 points) Show that G is not planar.

(c) (3 points) What is the chromatic number of G? Justify your answer.

4. (6 points) Prove that if S is a 15 element subset of $\{1, 2, ..., 50\}$, then there are four distinct elements $a, b, c, d \in S$ such that a + b = c + d

5. (6 points) Find the number of onto functions from the set $\{1, 2, 3, 4, 5, 6\}$ to the set $\{a, b, c\}$.

6. (5 points) Find integers y and z such that 55y + 38z = 1.

7. (5 points) Factor the binomial coefficient $\binom{18}{7}$ as a product of primes.

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.