Math N55– Practice Midterm 1 Discrete Mathematics

Instructor: Max Hlavacek

July 9, 2019

Name: _______Student Number: ______

This exam contains 7 pages (including this cover page) and 5 questions. Total of points is 50. Good luck !

Distribution of Marks

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

- 1. Mark each of the following True or False. No explanation required.
 - (a) (2 points) The compound proposition $(p \to q) \land (q \to r) \to (p \to r)$ is a tautology.
 - (b) (2 points) If x and y are irrational numbers, then x + y is irrational.
 - (c) (2 points) For every integer n there is a unique integer m such that $0 \le m \le 5$ and $m \equiv n \pmod{5}$
 - (d) (2 points) The set of prime numbers is countably infinite.
 - (e) (2 points) If A and B are sets such that $A \subset \mathbb{Z}$ and $B \subset \mathbb{Z}$, then $A \times B = B \times A$.

- 2. Prove that the following statements are false, i.e. prove their negations.
 - (a) (5 points)

 $\forall a, b \in \mathbb{Z}^+, \exists k \in \mathbb{Z}^+ (a + bk \text{ is prime}).$

(b) (5 points)

 $\exists a, b \in \mathbb{Z}^+, \forall k \in \mathbb{Z}^+(a+bk \text{ is prime}).$

3. (10 points) Prive that if an integer n is the sum of two squares, then $n \not\equiv 3 \pmod{4}$. Here, square means square of an integer.

4. (10 points) Prove that if a and m are positive integers such that $gcd(a, m) \neq 1$ then a does not have an inverse modulo m.

- 5. (a) (5 points) Find the remainder when 2^{55} is divided by the prime number 53.
 - (b) (5 points) Use the Euclidean Algorithm to find the greatest common divisor of 270 and 63.

This page is intentionally left blank to accommodate work that wouldn't fit elsewhere and/or scratch work.