Modules for k-Atoms and a Combinatorial Formula

Li-Chung Chen

University of California, Berkeley

RTGC Workshop June 2008

Skew-linked partitions

Definition

Partitions λ and μ are skew linked, written

$$\lambda \xrightarrow{\theta} \mu$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as μ .

Definition (from previous slide)

Partitions λ and μ are skew linked, written

$$\lambda \xrightarrow{\theta} \mu$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as $\mu.$

Example:

• Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.

∃ ▶ ∢

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

• If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

If λ → μ, then λ ≤ μ in the dominance partial ordering on partitions.
Transpose symmetry: λ → μ if and only if μ' → λ'

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (*n*).

• If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.

- Transpose symmetry: $\lambda \xrightarrow{\theta} \mu$ if and only if $\mu' \xrightarrow{\theta'} \lambda'$
- The two partitions λ and μ determine θ (and conversely, of course).

The "k-atom" case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of boxes in κ with hook-length at most k. Example (k = 4):

Then θ skew-links a *k*-bounded partition λ to the transpose of its Lapointe-Morse *k*-conjugate:

$$\lambda \xrightarrow{\theta} \mu = (\lambda^{[k]})'$$

The "k-atom" case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of boxes in κ with hook-length at most k. Example (k = 4):

These cases, along with the $\mu = (n)$ cases, are the key examples!

Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Decomposing a skew-linking shape θ into row chains

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

2

・ロト ・聞ト ・ヨト ・ヨト

2

・ロト ・聞ト ・ヨト ・ヨト

2

2

2

2

2

2

2

2

Now we group the rows into partitions, according to how far each row is from the end of its chain.

A remarkable fact is that doing it by columns leads to the same tuple of partitions.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

• We have diagram containments

$$\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)}.$$

In particular,

$$\gamma \stackrel{}{=}_{\mathsf{def}} (|\nu^{(1)}|, |\nu^{(2)}|, \dots, |\nu^{(r)}|)$$

is a partition.

Some other (easy) facts

The tuple of partitions

$$(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

• We have diagram containments

$$\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)}.$$

In particular,

$$\gamma = (|\nu^{(1)}|, |\nu^{(2)}|, \dots, |\nu^{(r)}|)$$

is a partition.

The statistic

$$n(\gamma) = \sum_{i} (i-1) \gamma_i = \sum_{i} (i-1) |\nu^{(i)}|$$

is equal to the number of "missing boxes," $|\beta|$, where $\theta = \alpha/\beta$.

Chen (U.C. Berkeley)

How to construct small $\mathbb{C}[\mathbf{x}] * S_n$ modules

Note: " $\mathbb{C}[\mathbf{x}] * S_n$ module" = " $\mathbb{C}[x_1, \ldots, x_n]$ module with S_n action."

Motivation: How to construct irreducible S_n -modules.

Let $V = \varepsilon \uparrow_{S_{\lambda'}}^{S_n}$ be the S_n module induced from the sign representation of the Young subgroup $S_{\lambda'}$.

Let $W = 1 \uparrow_{S_{\lambda}}^{S_n}$ be induced from the trivial representation of the Young subgroup S_{λ} .

How to construct small $\mathbb{C}[\mathbf{x}] * S_n$ modules

Note: " $\mathbb{C}[\mathbf{x}] * S_n$ module" = " $\mathbb{C}[x_1, \ldots, x_n]$ module with S_n action."

Motivation: How to construct irreducible S_n -modules.

Let $V = \varepsilon \uparrow_{S_{\lambda'}}^{S_n}$ be the S_n module induced from the sign representation of the Young subgroup $S_{\lambda'}$.

Let $W = 1 \uparrow_{S_{\lambda}}^{S_n}$ be induced from the trivial representation of the Young subgroup S_{λ} .

The irreducible V_{λ} is the image of the essentially unique homomorphism

$$V \xrightarrow[\phi]{} W.$$

This uniquely characterizes V_{λ} as

- **(**) generated by an (essentially unique) $S_{\lambda'}$ -antisymmetric element, and
- **2** co-generated by an (essentially unique) S_{λ} -invariant linear functional.

Question

Which $\mathbb{C}[\mathbf{x}] * S_n$ modules can be characterized in a similar fashion?

Let $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]$, the free $\mathbb{C}[\mathbf{x}]$ module on our previously considered induced S_n module.

Let $W = (1 \uparrow_{S_{\mu}}^{S_{n}}) \otimes \mathbb{C}[\mathbf{x}]^{*}$, a co-free $\mathbb{C}[\mathbf{x}]$ module on an induced S_{n} module, but we may have $\mu \neq \lambda$.

Let *d* be the smallest degree such that there is a non-zero S_n -module homomorphism

$$\psi\colon \left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d\to 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}.$$

Suppose further that λ and μ are such that ψ is essentially unique.

イロト 不得下 イヨト イヨト 二日

With $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]$ and $W = \left(1 \uparrow_{S_{\mu}}^{S_n} \right) \otimes \mathbb{C}[\mathbf{x}]^*$, let d = smallest degree such that there is a non-zero homomorphism

$$\psi \colon \left(\varepsilon \uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n} \right) \otimes \mathbb{C}[\mathbf{x}]_d \to 1 \uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}.$$

Suppose that λ and μ are such that ψ is essentially unique.

Proposition

With the above hypotheses, there is an essentially unique $\mathbb{C}[\mathbf{x}] * S_n$ homomorphism, homogeneous of degree zero

$$\phi \colon V \to W[-d].$$

Its image $M_{\lambda,\mu}$ is a graded $\mathbb{C}[\mathbf{x}] * S_n$ module uniquely characterized as

- generated by an (essentially unique) $S_{\lambda'}$ -antisymmetric element (in degree 0), and
- co-generated by an (essentially unique) S_μ-invariant linear functional (on the top degree, which is equal to d).

35

Main theorem

Theorem (C)

- The necessary and sufficient condition for the hypotheses of the preceding proposition to hold is that λ be skew-linked to μ.
- In that case, the degree d = (top degree of M_{λ,μ}) is equal to n(γ) = |β|, where the skew diagram linking λ to μ is θ = α/β.
- Moreover, the degree zero and top degree components of M_{λ,μ} are irreducible S_n modules isomorphic to V_λ and V_μ, respectively.

Transpose symmetry

Recall $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]$ and $W = \left(1 \uparrow_{S_{\mu}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]^*$. Suppose we dualize the essentially unique $\phi \colon V \to W[-d]$, then tensor with ε , the sign representation of S_n . The result is a nonzero homomorphism $\sigma \colon \left(\varepsilon \uparrow_{S_{(\mu')'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}] \to \left(\left(1 \uparrow_{S_{\lambda'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]^*\right)[-d]$. Since $\mu' \xrightarrow{\theta'} \lambda'$ with the same d, the image of σ is $M_{\mu',\lambda'}$.

Thus we obtain $M_{\mu',\lambda'}$ from $M_{\lambda,\mu}$ by dualizing and tensoring with ε . Dualizing reverses the degree, while tensoring with ε changes each copy of V_{α} to $V_{\alpha'}$.

Transpose symmetry

Recall $V = \left(\varepsilon \uparrow_{S_{\lambda'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]$ and $W = \left(1 \uparrow_{S_{\mu}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]^*$. Suppose we dualize the essentially unique $\phi \colon V \to W[-d]$, then tensor with ε , the sign representation of S_n . The result is a nonzero homomorphism $\sigma \colon \left(\varepsilon \uparrow_{S_{(\mu')'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}] \to \left(\left(1 \uparrow_{S_{\lambda'}}^{S_n}\right) \otimes \mathbb{C}[\mathbf{x}]^*\right)[-d]$. Since $\mu' \xrightarrow{\theta'} \lambda'$ with the same d, the image of σ is $M_{\mu',\lambda'}$.

Thus we obtain $M_{\mu',\lambda'}$ from $M_{\lambda,\mu}$ by dualizing and tensoring with ε . Dualizing reverses the degree, while tensoring with ε changes each copy of V_{α} to $V_{\alpha'}$.

Proposition

Suppose the graded Frobenius characteristic of $M_{\lambda,\mu}$ is $\sum_{\alpha} f_{\alpha}(t)S_{\alpha}(z)$, where $f_{\alpha}(t) \in \mathbb{N}[t]$. Then the graded Frobenius characteristic of $M_{\mu',\lambda'}$ is $t^{d} \sum_{\alpha} f_{\alpha}(t^{-1})S_{\alpha'}(z)$.

イロト イポト イヨト イヨト 二日

Special cases

• If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.

Special cases

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

Special cases

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

Remark: Garsia and Procesi prove the character formula directly from the structure of the module. Conceivably, we might determine the character of a general $M_{\lambda,\mu}$ by similarly elementary means.

Special cases

- If $\lambda = \mu$, then $M_{\lambda,\mu}$ is just the irreducible S_n -module V_{λ} , in degree zero, with the x_i 's annihilating it.
- If μ = (n), then (by results of Garsia, Procesi and N. Bergeron), M_{λ,(n)} is dual to the cohomology ring of the Springer variety X_λ. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$H_{\lambda}(z;t) = \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z).$$

Conjecture

If λ is k-bounded and $\mu = (\lambda^{[k]})'$ is the transpose of its k-conjugate, then the graded Frobenius characteristic of $M_{\lambda,\mu}$ is equal to the k-atom $A_{\lambda}^{(k)}(z;t)$ of Lascoux, Lapointe and Morse.

35

Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

Bits of the proof of the uniqueness theorem

Goal: characterize λ , μ such that the space

$$\mathsf{Hom}_{\mathcal{S}_n}\left(\left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d,\ 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}\right)$$

has dimension 1 in the smallest degree d for which it is non-zero.

Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

Bits of the proof of the uniqueness theorem

Goal: characterize $\lambda,\,\mu$ such that the space

$$\mathsf{Hom}_{\mathcal{S}_n}\big(\left(\varepsilon\uparrow_{\mathcal{S}_{\lambda'}}^{\mathcal{S}_n}\right)\otimes\mathbb{C}[\mathbf{x}]_d,\ 1\uparrow_{\mathcal{S}_{\mu}}^{\mathcal{S}_n}\big)$$

has dimension 1 in the smallest degree d for which it is non-zero.

Lemma

The desired degree d is the minimum of

$$\sum_{i,j} \binom{a_{i,j}}{2}$$

over all non-negative integer matrices A with row sums μ and column sums $\lambda'.$

The desired dimension-one condition holds if and only if the minimizing matrix A is unique.

Proposition (C)

A matrix A with specified, weakly decreasing row and column sums uniquely minimizes $\sum_{i,j} {a_{i,j} \choose 2}$ iff it satisfies the following condition: For every 2×2 minor $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ of A, we have

$$(a+d) - (b+c) \le 1$$
 if $a, d > 0$
 $(b+c) - (a+d) \le 1$ if $b, c > 0$

Such a matrix A must have the entries $a_{i,j}$ weakly decrease along rows and columns, i.e., A is a plane partition.

Moreover, there exists such a matrix A with column sums λ' and row sums μ if and only λ is skew-linked to μ , in which case A is given by the plane partition with layers $(\nu^{(1)}, \nu^{(2)}, \dots, \nu^{(r)})$.

イロト イポト イヨト イヨト

Example:

э

For the extra conclusion of the uniqueness theorem, that $M_{\lambda,\mu}$ is generated by V_{λ} and co-generated by V_{μ} , we must also prove that

$$\langle \chi^{\lambda} \otimes \operatorname{ch}(\mathbb{C}[\mathbf{x}]_d), \, \chi^{\mu} \rangle \neq 0.$$

This follows from

- **1** $d = \sum_{i} (i-1) |\nu^{(i)}|$, and

The second point holds because $\lambda = \bigsqcup_i \nu^{(i)}$ and $\mu = \sum_i \nu^{(i)}$.

For the extra conclusion of the uniqueness theorem, that $M_{\lambda,\mu}$ is generated by V_{λ} and co-generated by V_{μ} , we must also prove that

$$\langle \chi^{\lambda} \otimes \operatorname{ch}(\mathbb{C}[\mathbf{x}]_d), \, \chi^{\mu} \rangle \neq 0.$$

This follows from

- **1** $d = \sum_{i} (i-1) |\nu^{(i)}|$, and
- 2 the Littlewood-Richardson coefficients $c^{\lambda}_{\nu^{(1)},...,\nu^{(r)}}$ and $c^{\mu}_{\nu^{(1)},...,\nu^{(r)}}$ are both non-zero.

The second point holds because $\lambda = \bigsqcup_i \nu^{(i)}$ and $\mu = \sum_i \nu^{(i)}$.

In fact, this implies that

$$\left\langle \chi^{\lambda}\otimes\chi^{\gamma},\,\chi^{\mu}\right
angle \ =\ 1.$$

Note that $\lambda',\,\mu$ and γ are the three projections of the plane partition given by the matrix A.

Charge

Definition

Given a word of partition weight, label its letters in the following way.

- Let $\ell = 0$.
- Starting from the end of the word and scanning backward, give label ℓ to the first 1, the first 2 following this 1, the first 3 following this 2, and so on.
- When the next letter (say p) is not found, start again at the end of the word and increment ℓ by 1. Give label ℓ to the first p, the first p+1 following this p, and so on.
- Keep scanning, incrementing ℓ as necessary, until one of each letter has been labelled.
- Repeat the above procedure on the unlabelled letters, each time resetting $\ell = 0$, until all letters have been labelled.

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example:
$$T = \frac{36}{22}, w = 362211345.$$

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example:
$$T = \begin{bmatrix} 3 & 6 \\ 2 & 2 \\ 1 & 1 & 3 & 4 & 5 \end{bmatrix}$$
, $w = 362211345$.

The labelling passes through w are

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example:
$$T = \frac{36}{22}, w = 362211345.$$

The labelling passes through w are

 $3_0622_011_0345$ $3_0622_011_034_15$ $3_06_222_011_034_15_2$

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example:
$$T = \frac{36}{22}, w = 362211345.$$

The labelling passes through w are

 $3_0622_011_0345$ $3_0622_011_034_15$ $3_06_222_011_034_15_2$

 $3_0 6_2 2_0 2_0 1_0 1_0 3 4_1 5_2 \quad 3_0 6_2 2_0 2_0 1_0 1_0 3_1 4_1 5_2$

The *charge* of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example:
$$T = \frac{36}{22}, w = 362211345.$$

The labelling passes through w are

 $3_0622_011_0345$ $3_0622_011_034_15$ $3_06_222_011_034_15_2$

 $3_0 6_2 2_0 2_0 1_0 1_0 3 4_1 5_2 \quad 3_0 6_2 2_0 2_0 1_0 1_0 3_1 4_1 5_2$

Charge = 0 + 2 + 0 + 0 + 0 + 0 + 1 + 1 + 2 = 6.

Definition

• A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For i = 1, ..., r, the *i*th smallest letter in T are all in the *i*th row.

- A tableau *T* is *r*-catabolizable if its *r* smallest letters are in superstandard position: For *i* = 1,...,*r*, the *i*th smallest letter in *T* are all in the *i*th row.
- If T is r-catabolizable, define $cat_r(T)$ as follows:

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For i = 1, ..., r, the *i*th smallest letter in T are all in the *i*th row.
- If T is r-catabolizable, define cat_r(T) as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For i = 1, ..., r, the *i*th smallest letter in T are all in the *i*th row.
- If T is r-catabolizable, define cat_r(T) as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For i = 1, ..., r, the *i*th smallest letter in T are all in the *i*th row.
- If T is r-catabolizable, define cat_r(T) as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.
- Denote by UV the skew tableau obtained by juxtaposing U to the northwest corner of V.

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For i = 1, ..., r, the *i*th smallest letter in T are all in the *i*th row.
- If T is r-catabolizable, define cat_r(T) as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.
- Denote by UV the skew tableau obtained by juxtaposing U to the northwest corner of V.
- Let $cat_r(T)$ be the unique tableau that is Knuth equivalent to UV.

Example:

-

3. 3

Catabolism sequence

Definition

Let r_1, r_2, \ldots, r_m be a sequence of positive integers. A tableau T is r_1, \ldots, r_m -catabolizable if there exists a sequence of tableaux $T_0 = T, T_1, \ldots, T_m$ such that T_{i-1} is r_i -catabolizable with $T_i = cat_{r_i}(T_{i-1})$ for $i = 1, \ldots, m$. Denote $cat_{r_1, r_2, \ldots, r_i}(T) = T_i$.

Example: T is 2, 2, 1-catabolizable

• Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.
- If λ is a partition, then all (semistandard) tableaux of weight λ are $1^{\ell(\lambda)}$ -catabolizable

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.
- If λ is a partition, then all (semistandard) tableaux of weight λ are $1^{\ell(\lambda)}$ -catabolizable.
- On the other hand, the only $\ell(\lambda)$ -catabolizable tableau of weight λ is the superstandard tableau, which is catabolizable with respect to every sequence.

Monotone row-chaining

If a row starts at column 0, by convention we consider it to be chained on the left to row $\ell(\lambda) + 1$.

Monotone row-chaining

If a row starts at column 0, by convention we consider it to be chained on the left to row $\ell(\lambda) + 1$.

Definition

Call a row-chaining scheme *monotone* if for i < i', if row *i* is chained on the left to row *j* and row *i'* is chained on the left to row *j'*, then either j < j' or $j = j' = \ell(\lambda) + 1$.

Monotone row-chaining

If a row starts at column 0, by convention we consider it to be chained on the left to row $\ell(\lambda) + 1$.

Definition

Call a row-chaining scheme *monotone* if for i < i', if row i is chained on the left to row *j* and row *i'* is chained on the left to row *j'*, then either i < i' or $i = i' = \ell(\lambda) + 1$.

Proposition

For each i, there exist constants b_i , d_i such that monotone row-chaining schemes can chain row i on the left to any row $j \in [i + b_i, i + d_i]$ but no other row.

3

Suppose row *i* does not start at column 0. Let rows *i* - *r*,...,*i* + *s* be the ones that begin at the same place as row *i*. Let rows *i'*,...,*i''* be the ones that end at the same place as where row *i* begins. Then

$$b_i = i' + r - i, d_i = i'' - s - i.$$

If row i does start at column 0, then

$$b_i = d_i = \ell(\lambda) + 1 - i.$$

Tableau atoms

Definition

Let $\lambda \xrightarrow{\theta} \mu$ and define b_i, d_i as above. Define the tableau atom $\mathbb{A}_{\lambda,\mu}$ to be the set of tableaux of weight λ that are r_1, \ldots, r_m -catabolizable whenever $r_1 + \ldots + r_m = \ell(\lambda)$, and $r_{i+1} \leq d_{r_1 + \ldots + r_i + 1}$ for $i = 0, \ldots, m - 1$. Define $A_{\lambda,\mu}(z; t) = \sum_{T \in \mathbb{A}_{\lambda,\mu}} t^{charge(T)} S_{shape(T)}(z)$.

Tableau atoms

Definition

Let $\lambda \xrightarrow{\theta} \mu$ and define b_i, d_i as above. Define the tableau atom $\mathbb{A}_{\lambda,\mu}$ to be the set of tableaux of weight λ that are r_1, \ldots, r_m -catabolizable whenever

•
$$r_1 + \ldots + r_m = \ell(\lambda)$$
, and
• $r_{i+1} \leq d_{r_1 + \ldots + r_i + 1}$ for $i = 0, \ldots, m - 1$.
Define $A_{\lambda,\mu}(z; t) = \sum_{T \in \mathbb{A}_{\lambda,\mu}} t^{charge(T)} S_{shape(T)}(z)$.

Let θ^r be the result of removing the first r rows of θ . Notice $\lambda^r \xrightarrow{\theta^r} \mu^r$ for $\lambda^r = (\lambda_{r+1}, \lambda_{r+2}, \ldots)$ and some partition μ^r . Then $\mathbb{A}_{\lambda,\mu}$ is the set of tableaux T of weight λ such that for every $r = 1, 2, \ldots, d_1$,

- **1** T is r-catabolizable, and
- 2 $cat_r(T) \in \mathbb{A}_{\lambda^r,\mu^r}$.

Conjecture

 $A_{\lambda,\mu}(z;t)$ is the graded Frobenius characteristic of $M_{\lambda,\mu}$.

æ

Conjecture

 $A_{\lambda,\mu}(z;t)$ is the graded Frobenius characteristic of $M_{\lambda,\mu}$.

Conjecture

If λ is k-bounded and $\mu = (\lambda^{[k]})'$ is the transpose of its k-conjugate, then $\mathbb{A}_{\lambda,\mu}$ coincides with the tableau atom $\mathbb{A}_{\lambda}^{(k)}$ of Lascoux, Lapointe and Morse.

Notable special cases

 When λ = μ, d₁ = ℓ(λ), so every T ∈ A_{λ,λ} is ℓ(λ)-catabolizable. Thus A_{λ,λ} consists only of the superstandard tableau. It has charge 0, so A_{λ,λ}(z; t) = S_λ(z) as required.

Notable special cases

1 When $\lambda = \mu$, $d_1 = \ell(\lambda)$, so every $T \in \mathbb{A}_{\lambda,\lambda}$ is $\ell(\lambda)$ -catabolizable. Thus $\mathbb{A}_{\lambda,\lambda}$ consists only of the superstandard tableau. It has charge 0, so $A_{\lambda,\lambda}(z;t) = S_{\lambda}(z)$ as required.

2 When $\mu = (n)$, $d_i = 1$ for all *i*, so $\mathbb{A}_{\lambda,(n)}$ consists of all $1^{\ell(\lambda)}$ -catabolizable tableaux, *i.e. all* tableaux of weight λ . Thus

$$\begin{aligned} A_{\lambda,(n)}(z;t) &= \sum_{\kappa} \sum_{T \in SSYT(\kappa,\lambda)} t^{charge(T)} S_{\kappa}(z) \\ &= \sum_{\kappa} K_{\kappa,\lambda}(t) S_{\kappa}(z) \\ &= H_{\lambda}(z;t). \end{aligned}$$

Examples: Let $\lambda = (2, 1, 1, 1)$. The skew-linking shapes for λ are

catabolism sequences = all compositions of 4

$$\mathbb{A}_{2111,2111} = \begin{cases} \frac{4}{3} \\ \frac{2}{11} \end{cases}, A_{2111,2111}(z;t) = t^0 S_{2111}(z)$$

catabolism sequences = all compositions of 4 except (4)

$$\mathbb{A}_{2111,2111} = \left\{ \begin{bmatrix} 3 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
$$A_{2111,311}(z;t) = t^1 S_{311}(z) + t^0 S_{2111}(z)$$

표 문 문

catabolism sequences = 22, 121, 112, 1111

$$\mathbb{A}_{2111,32} = \left\{ \begin{bmatrix} 2 & 4 \\ 1 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \\ 1 & 1 & 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 & 1 & 4 \end{bmatrix} \right\}$$
$$A_{2111,32}(z;t) = t^2 S_{32}(z) + t^1 S_{311}(z) + t^0 S_{2111}(z)$$

э

æ

$$\begin{array}{c} \begin{array}{c} b_{1}=1 \quad b_{2}=1 \quad b_{3}=2 \quad b_{4}=1 \\ \vdots \quad d_{1}=1 \quad d_{2}=2 \quad d_{3}=2 \quad d_{4}=1 \\ \end{array} \\ \begin{array}{c} catabolism \ sequences=121, \ 112, \ 1111 \\ \\ \mathbb{A}_{2111,41}=\left\{ \begin{array}{c} \boxed{2} & 1 & 1 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 3 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline 1$$

■ のへで

・ロト ・四ト ・ヨト ・ヨト

$$\mathbb{A}_{2111,5} = \cup_{\kappa} SSYT(\kappa, 2111)$$

 $A_{2111,5}(z; t) = H_{2111}(z; t)$

■ のへで

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Weaker catabolism conditions

Conjecture

Let θ^r , $\lambda^r \xrightarrow{\theta^r} \mu^r$ be as before. Let $i \in [b_1, d_1]$. Then $\mathbb{A}_{\lambda,\mu}$ is the set of tableaux T of weight λ such that for r = 1 and r = i,

- T is r-catabolizable, and
- 2 $cat_r(T) \in \mathbb{A}_{\lambda^r,\mu^r}$.

Weaker catabolism conditions

Conjecture

Let θ^r , $\lambda^r \xrightarrow{\theta^r} \mu^r$ be as before. Let $i \in [b_1, d_1]$. Then $\mathbb{A}_{\lambda,\mu}$ is the set of tableaux T of weight λ such that for r = 1 and r = i,

- T is r-catabolizable, and
- 2 $cat_r(T) \in \mathbb{A}_{\lambda^r,\mu^r}$.

Remark: For $\mu = \lambda$ or $\mu = (n)$, we can check directly that the weaker catabolism condition suffices.

Weaker catabolism conditions

Conjecture

Let θ^r , $\lambda^r \xrightarrow{\theta^r} \mu^r$ be as before. Let $i \in [b_1, d_1]$. Then $\mathbb{A}_{\lambda,\mu}$ is the set of tableaux T of weight λ such that for r = 1 and r = i,

- T is r-catabolizable, and
- 2 $cat_r(T) \in \mathbb{A}_{\lambda^r,\mu^r}$.

Remark: For $\mu = \lambda$ or $\mu = (n)$, we can check directly that the weaker catabolism condition suffices. Suppose λ is k-bounded and its (k + 1)-core induces $\lambda \xrightarrow{\theta} \mu$. Let

 $h = k + 1 - \lambda_1$ (the height of the first part of λ 's k-split). Then

$$b_1 \leq h \leq d_1$$
.

Thus the catabolism requirement for $\mathbb{A}_{\lambda}^{(k)}$ of Lascoux, Lapointe, and Morse is a special case.