Modules for k-Atoms and a Combinatorial Formula

Li-Chung Chen
University of California, Berkeley

RTGC Workshop
June 2008

Skew-linked partitions

Definition

Partitions λ and μ are skew linked, written

$$
\lambda \xrightarrow{\theta} \mu
$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as μ.

Definition (from previous slide)

Partitions λ and μ are skew linked, written

$$
\lambda \xrightarrow{\theta} \mu
$$

if there exists a skew diagram θ with the same row lengths (in order) as λ and the same column lengths as μ.

Example:

Some simple observations

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.

Some simple observations

- Every partition is linked to itself: $\lambda \stackrel{\lambda}{\rightarrow} \lambda$.
- Every λ is linked to the one-row partition (n).

Some simple observations

- Every partition is linked to itself: $\lambda \stackrel{\lambda}{\rightarrow} \lambda$.
- Every λ is linked to the one-row partition (n).

- If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.

Some simple observations

- Every partition is linked to itself: $\lambda \stackrel{\lambda}{\rightarrow} \lambda$.
- Every λ is linked to the one-row partition (n).

- If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.
- Transpose symmetry: $\lambda \xrightarrow{\theta} \mu$ if and only if $\mu^{\prime} \xrightarrow{\theta^{\prime}} \lambda^{\prime}$

Some simple observations

- Every partition is linked to itself: $\lambda \xrightarrow{\lambda} \lambda$.
- Every λ is linked to the one-row partition (n).

- If $\lambda \xrightarrow{\theta} \mu$, then $\lambda \leq \mu$ in the dominance partial ordering on partitions.
- Transpose symmetry: $\lambda \xrightarrow{\theta} \mu$ if and only if $\mu^{\prime} \xrightarrow{\theta^{\prime}} \lambda^{\prime}$
- The two partitions λ and μ determine θ (and conversely, of course).

The " k-atom" case

Let κ be a $(k+1)$-core (no hook-length $=k+1$), and let θ be the set of boxes in κ with hook-length at most k.
Example ($k=4$):

μ

Then θ skew-links a k-bounded partition λ to the transpose of its LapointeMorse k-conjugate:

$$
\lambda \xrightarrow{\theta} \mu=\left(\lambda^{[k]}\right)^{\prime}
$$

Let κ be a $(k+1)$-core (no hook-length $=k+1$), and let θ be the set of boxes in κ with hook-length at most k.
Example ($k=4$):

These cases, along with the $\mu=(n)$ cases, are the key examples!

Decomposing a skew-linking shape θ into row chains

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

Example:

Now we group the rows into partitions, according to how far each row is from the end of its chain.

$\nu^{(1)}$

$\nu^{(2)}$

$\nu^{(3)}$

Example:

A remarkable fact is that doing it by columns leads to the same tuple of partitions.

$\nu^{(1)}$

$\nu^{(2)}$

$\nu^{(3)}$

Some other (easy) facts

The tuple of partitions

$$
\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(r)}\right)
$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

Some other (easy) facts

The tuple of partitions

$$
\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(r)}\right)
$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

- We have diagram containments

$$
\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)} .
$$

In particular,

$$
\gamma \underset{\text { def }}{=}\left(\left|\nu^{(1)}\right|,\left|\nu^{(2)}\right|, \ldots,\left|\nu^{(r)}\right|\right)
$$

is a partition.

Some other (easy) facts

The tuple of partitions

$$
\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(r)}\right)
$$

associated to a skew-linked pair $\lambda \xrightarrow{\theta} \mu$ has the following properties.

- We have diagram containments

$$
\nu^{(1)} \supseteq \nu^{(2)} \supseteq \cdots \supseteq \nu^{(r)} .
$$

In particular,

$$
\gamma \underset{\text { def }}{=}\left(\left|\nu^{(1)}\right|,\left|\nu^{(2)}\right|, \ldots,\left|\nu^{(r)}\right|\right)
$$

is a partition.

- The statistic

$$
n(\gamma) \underset{\operatorname{def}}{=} \sum_{i}(i-1) \gamma_{i}=\sum_{i}(i-1)\left|\nu^{(i)}\right|
$$

is equal to the number of "missing boxes," $|\beta|$, where $\theta=\alpha / \beta$.

Note: " $\mathbb{C}[\mathbf{x}] * S_{n}$ module" $=" \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ module with S_{n} action."
Motivation: How to construct irreducible S_{n}-modules.
Let $V=\varepsilon \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}$, be the S_{n} module induced from the sign representation of the Young subgroup $S_{\lambda^{\prime}}$.

Let $W=1 \uparrow_{S_{\lambda}}^{S_{n}}$ be induced from the trivial representation of the Young subgroup S_{λ}.

How to construct small $\mathbb{C}[x] * S_{n}$ modules

Note: " $\mathbb{C}[\mathbf{x}] * S_{n}$ module" $=" \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ module with S_{n} action."
Motivation: How to construct irreducible S_{n}-modules.
Let $V=\varepsilon \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}$, be the S_{n} module induced from the sign representation of the Young subgroup $S_{\lambda^{\prime}}$.

Let $W=1 \uparrow{ }_{S_{\lambda}}^{S_{n}}$ be induced from the trivial representation of the Young subgroup S_{λ}.

The irreducible V_{λ} is the image of the essentially unique homomorphism

$$
V \underset{\phi}{\rightarrow} W
$$

This uniquely characterizes V_{λ} as
(1) generated by an (essentially unique) $S_{\lambda^{\prime}}$-antisymmetric element, and
(2) co-generated by an (essentially unique) S_{λ}-invariant linear functional.

Question

Which $\mathbb{C}[\mathbf{x}] * S_{n}$ modules can be characterized in a similar fashion?

Let $V=\left(\varepsilon \uparrow S_{S_{\lambda^{\prime}}}\right) \otimes \mathbb{C}[\mathbf{x}]$, the free $\mathbb{C}[\mathbf{x}]$ module on our previously considered induced S_{n} module.
Let $W=\left(1 \uparrow_{S_{\mu}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]^{*}$, a co-free $\mathbb{C}[\mathbf{x}]$ module on an induced S_{n} module, but we may have $\mu \neq \lambda$.

Let d be the smallest degree such that there is a non-zero S_{n}-module homomorphism

$$
\psi:\left(\varepsilon \uparrow \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]_{d} \rightarrow 1 \uparrow_{S_{\mu}}^{S_{n}}
$$

Suppose further that λ and μ are such that ψ is essentially unique.

With $V=\left(\varepsilon \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathrm{x}]$ and $W=\left(1 \uparrow_{S_{\mu}}^{S_{n}}\right) \otimes \mathbb{C}[\mathrm{x}]^{*}$, let $d=$ smallest degree such that there is a non-zero homomorphism

$$
\psi:\left(\varepsilon \uparrow \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]_{d} \rightarrow 1 \uparrow_{S_{\mu}}^{S_{n}}
$$

Suppose that λ and μ are such that ψ is essentially unique.

Proposition

With the above hypotheses, there is an essentially unique $\mathbb{C}[\mathbf{x}] * S_{n}$ homomorphism, homogeneous of degree zero

$$
\phi: V \rightarrow W[-d] .
$$

Its image $M_{\lambda, \mu}$ is a graded $\mathbb{C}[\mathbf{x}] * S_{n}$ module uniquely characterized as
(1) generated by an (essentially unique) $S_{\lambda^{\prime}}$-antisymmetric element (in degree 0), and
(2) co-generated by an (essentially unique) S_{μ}-invariant linear functional (on the top degree, which is equal to d).

Main theorem

Theorem (C)

(1) The necessary and sufficient condition for the hypotheses of the preceding proposition to hold is that λ be skew-linked to μ.
(2) In that case, the degree $d=$ (top degree of $M_{\lambda, \mu}$) is equal to $n(\gamma)=|\beta|$, where the skew diagram linking λ to μ is $\theta=\alpha / \beta$.
(3) Moreover, the degree zero and top degree components of $M_{\lambda, \mu}$ are irreducible S_{n} modules isomorphic to V_{λ} and V_{μ}, respectively.

Transpose symmetry

Recall $V=\left(\varepsilon \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]$ and $W=\left(1 \uparrow_{S_{\mu}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]^{*}$. Suppose we dualize the essentially unique $\phi: V \rightarrow W[-d]$, then tensor with ε, the sign representation of S_{n}. The result is a nonzero homomorphism
$\sigma:\left(\varepsilon \uparrow_{S_{\left(\mu^{\prime}\right)^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}] \rightarrow\left(\left(1 \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]^{*}\right)[-d]$. Since $\mu^{\prime} \xrightarrow{\theta^{\prime}} \lambda^{\prime}$ with the same d, the image of σ is $M_{\mu^{\prime}, \lambda^{\prime}}$.
Thus we obtain $M_{\mu^{\prime}, \lambda^{\prime}}$ from $M_{\lambda, \mu}$ by dualizing and tensoring with ε. Dualizing reverses the degree, while tensoring with ε changes each copy of V_{α} to $V_{\alpha^{\prime}}$.

Transpose symmetry

Recall $V=\left(\varepsilon \uparrow_{S_{x^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]$ and $W=\left(1 \uparrow_{S_{\mu}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]^{*}$. Suppose we dualize the essentially unique $\phi: V \rightarrow W[-d]$, then tensor with ε, the sign representation of S_{n}. The result is a nonzero homomorphism $\sigma:\left(\varepsilon \uparrow_{S_{\left(\mu^{\prime}\right)^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}] \rightarrow\left(\left(1 \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]^{*}\right)[-d]$. Since $\mu^{\prime} \xrightarrow{\theta^{\prime}} \lambda^{\prime}$ with the same d, the image of σ is $M_{\mu^{\prime}, \lambda^{\prime}}$.
Thus we obtain $M_{\mu^{\prime}, \lambda^{\prime}}$ from $M_{\lambda, \mu}$ by dualizing and tensoring with ε.
Dualizing reverses the degree, while tensoring with ε changes each copy of V_{α} to $V_{\alpha^{\prime}}$.

Proposition

Suppose the graded Frobenius characteristic of $M_{\lambda, \mu}$ is $\sum_{\alpha} f_{\alpha}(t) S_{\alpha}(z)$, where $f_{\alpha}(t) \in \mathbb{N}[t]$. Then the graded Frobenius characteristic of $M_{\mu^{\prime}, \lambda^{\prime}}$ is $t^{d} \sum_{\alpha} f_{\alpha}\left(t^{-1}\right) S_{\alpha^{\prime}}(z)$.

Special cases

- If $\lambda=\mu$, then $M_{\lambda, \mu}$ is just the irreducible S_{n}-module V_{λ}, in degree zero, with the x_{i} 's annihilating it.

Special cases

- If $\lambda=\mu$, then $M_{\lambda, \mu}$ is just the irreducible S_{n}-module V_{λ}, in degree zero, with the x_{i} 's annihilating it.
- If $\mu=(n)$, then (by results of Garsia, Procesi and N. Bergeron), $M_{\lambda,(n)}$ is dual to the cohomology ring of the Springer variety X_{λ}. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$
H_{\lambda}(z ; t)=\sum_{\kappa} K_{\kappa, \lambda}(t) S_{\kappa}(z) .
$$

Special cases

- If $\lambda=\mu$, then $M_{\lambda, \mu}$ is just the irreducible S_{n}-module V_{λ}, in degree zero, with the x_{i} 's annihilating it.
- If $\mu=(n)$, then (by results of Garsia, Procesi and N. Bergeron), $M_{\lambda,(n)}$ is dual to the cohomology ring of the Springer variety X_{λ}. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$
H_{\lambda}(z ; t)=\sum_{\kappa} K_{\kappa, \lambda}(t) S_{\kappa}(z) .
$$

Remark: Garsia and Procesi prove the character formula directly from the structure of the module. Conceivably, we might determine the character of a general $M_{\lambda, \mu}$ by similarly elementary means.

Special cases

- If $\lambda=\mu$, then $M_{\lambda, \mu}$ is just the irreducible S_{n}-module V_{λ}, in degree zero, with the x_{i} 's annihilating it.
- If $\mu=(n)$, then (by results of Garsia, Procesi and N. Bergeron), $M_{\lambda,(n)}$ is dual to the cohomology ring of the Springer variety X_{λ}. Its graded Frobenius characteristic is equal to the Hall-Littlewood polynomial

$$
H_{\lambda}(z ; t)=\sum_{\kappa} K_{\kappa, \lambda}(t) S_{\kappa}(z) .
$$

Conjecture

If λ is k-bounded and $\mu=\left(\lambda^{[k]}\right)^{\prime}$ is the transpose of its k-conjugate, then the graded Frobenius characteristic of $M_{\lambda, \mu}$ is equal to the k-atom $A_{\lambda}^{(k)}(z ; t)$ of Lascoux, Lapointe and Morse.

Bits of the proof of the uniqueness theorem

Goal: characterize λ, μ such that the space

$$
\operatorname{Hom}_{S_{n}}\left(\left(\varepsilon \uparrow_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]_{d}, 1 \uparrow_{S_{\mu}}^{S_{n}}\right)
$$

has dimension 1 in the smallest degree d for which it is non-zero.

Bits of the proof of the uniqueness theorem

Goal: characterize λ, μ such that the space

$$
\operatorname{Hom}_{S_{n}}\left(\left(\varepsilon \uparrow S_{S_{\lambda^{\prime}}}^{S_{n}}\right) \otimes \mathbb{C}[\mathbf{x}]_{d}, 1 \uparrow \uparrow_{S_{\mu}}^{S_{n}}\right)
$$

has dimension 1 in the smallest degree d for which it is non-zero.

Lemma

The desired degree d is the minimum of

$$
\sum_{i, j}\binom{a_{i, j}}{2}
$$

over all non-negative integer matrices A with row sums μ and column sums λ^{\prime}.
The desired dimension-one condition holds if and only if the minimizing matrix A is unique.

Proposition (C)

A matrix A with specified, weakly decreasing row and column sums uniquely minimizes $\sum_{i, j}\binom{a_{i, j}}{2}$ iff it satisfies the following condition:
For every 2×2 minor $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of A, we have

$$
\begin{array}{ll}
(a+d)-(b+c) \leq 1 & \text { if } a, d>0 \\
(b+c)-(a+d) \leq 1 & \text { if } b, c>0
\end{array}
$$

Such a matrix A must have the entries $a_{i, j}$ weakly decrease along rows and columns, i.e., A is a plane partition.
Moreover, there exists such a matrix A with column sums λ^{\prime} and row sums μ if and only λ is skew-linked to μ, in which case A is given by the plane partition with layers $\left(\nu^{(1)}, \nu^{(2)}, \ldots, \nu^{(r)}\right)$.

Example:

$\begin{array}{lllll}10 & 7 & 4 & 3 & 2\end{array}$

μ

$\nu^{(1)}$

$\nu^{(2)}$

$\nu^{(3)}$

For the extra conclusion of the uniqueness theorem, that $M_{\lambda, \mu}$ is generated by V_{λ} and co-generated by V_{μ}, we must also prove that

$$
\left\langle\chi^{\lambda} \otimes \operatorname{ch}\left(\mathbb{C}[\mathbf{x}]_{d}\right), \chi^{\mu}\right\rangle \neq 0
$$

This follows from
(1) $d=\sum_{i}(i-1)\left|\nu^{(i)}\right|$, and
(2) the Littlewood-Richardson coefficients $c_{\nu^{(1)}, \ldots, \nu^{(r)}}^{\lambda}$ and $c_{\nu^{(1)}, \ldots, \nu^{(r)}}^{\mu}$ are both non-zero.

The second point holds because $\lambda=\bigsqcup_{i} \nu^{(i)}$ and $\mu=\sum_{i} \nu^{(i)}$.

For the extra conclusion of the uniqueness theorem, that $M_{\lambda, \mu}$ is generated by V_{λ} and co-generated by V_{μ}, we must also prove that

$$
\left\langle\chi^{\lambda} \otimes \operatorname{ch}\left(\mathbb{C}[\mathbf{x}]_{d}\right), \chi^{\mu}\right\rangle \neq 0
$$

This follows from
(1) $d=\sum_{i}(i-1)\left|\nu^{(i)}\right|$, and
(2) the Littlewood-Richardson coefficients $c_{\nu^{(1)}, \ldots, \nu^{(r)}}^{\lambda}$ and $c_{\nu^{(1)}, \ldots, \nu^{(r)}}^{\mu}$ are both non-zero.

The second point holds because $\lambda=\bigsqcup_{i} \nu^{(i)}$ and $\mu=\sum_{i} \nu^{(i)}$.
In fact, this implies that

$$
\left\langle\chi^{\lambda} \otimes \chi^{\gamma}, \chi^{\mu}\right\rangle=1
$$

Note that λ^{\prime}, μ and γ are the three projections of the plane partition given by the matrix A.

Charge

Definition

Given a word of partition weight, label its letters in the following way.

- Let $\ell=0$.
- Starting from the end of the word and scanning backward, give label ℓ to the first 1 , the first 2 following this 1 , the first 3 following this 2 , and so on.
- When the next letter (say p) is not found, start again at the end of the word and increment ℓ by 1 . Give label ℓ to the first p, the first $p+1$ following this p, and so on.
- Keep scanning, incrementing ℓ as necessary, until one of each letter has been labelled.
- Repeat the above procedure on the unlabelled letters, each time resetting $\ell=0$, until all letters have been labelled.

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example: $\left.T=\begin{array}{|l|lll}\hline 3 & 6 \\ 2 & 2 & \\ \hline & 2 & 3 & \\ \hline & 1 & 3 & 4\end{array}\right), w=362211345$.

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example: $\left.T=\begin{array}{|l|lll}\hline 3 & 6 \\ 2 & 2 & \\ \hline & 2 & 3 & \\ \hline & 1 & 3 & 4\end{array}\right), w=362211345$.
The labelling passes through w are

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example: $\left.T=\begin{array}{|l|lll}\hline 3 & 6 \\ 2 & 2 & \\ \hline & 2 & 3 & \\ \hline & 1 & 3 & 4\end{array}\right), w=362211345$.
The labelling passes through w are

$$
3_{0} 622_{0} 11_{0} 345 \quad 3_{0} 622_{0} 11_{0} 34_{1} 5 \quad 3_{0} 6_{2} 22_{0} 11_{0} 34_{1} 5_{2}
$$

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example: $\left.T=\begin{array}{|l|lll}\hline 3 & 6 \\ 2 & 2 & \\ \hline & 2 & 3 & \\ \hline & 1 & 3 & 4\end{array}\right), ~ w=362211345$.
The labelling passes through w are

$$
3_{0} 622_{0} 11_{0} 345 \quad 3_{0} 622_{0} 11_{0} 34_{1} 5 \quad 3_{0} 6_{2} 22_{0} 11_{0} 34_{1} 5_{2}
$$

$$
3_{0} 6_{2} 2_{0} 2_{0} 1_{0} 1_{0} 34_{1} 5_{2} \quad 3_{0} 6_{2} 2_{0} 2_{0} 1_{0} 1_{0} 3_{1} 4_{1} 5_{2}
$$

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau with partition weight is the charge of its row-reading word.

Example: $\left.T=\begin{array}{|l|lll}\hline 3 & 6 \\ 2 & 2 & \\ \hline & 2 & 3 & \\ \hline & 1 & 3 & 4\end{array}\right), ~ w=362211345$.
The labelling passes through w are

$$
3_{0} 622_{0} 11_{0} 345 \quad 30622_{0} 11_{0} 34_{1} 5 \quad 3_{0} 6_{2} 22_{0} 11_{0} 34_{1} 5_{2}
$$

$$
3_{0} 6_{2} 2_{0} 2_{0} 1_{0} 1_{0} 34_{1} 5_{2} \quad 3_{0} 6_{2} 2_{0} 2_{0} 1_{0} 1_{0} 3_{1} 4_{1} 5_{2}
$$

Charge $=0+2+0+0+0+0+1+1+2=6$.

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the ith row.

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the ith row.
- If T is r-catabolizable, define $\operatorname{cat}_{r}(T)$ as follows:

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the ith row.
- If T is r-catabolizable, define $\operatorname{cat}_{r}(T)$ as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the ith row.
- If T is r-catabolizable, define $\operatorname{cat}_{r}(T)$ as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the i th row.
- If T is r-catabolizable, define $\operatorname{cat}_{r}(T)$ as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.
- Denote by $U V$ the skew tableau obtained by juxtaposing U to the northwest corner of V.

One step of catabolism

Definition

- A tableau T is r-catabolizable if its r smallest letters are in superstandard position: For $i=1, \ldots, r$, the i th smallest letter in T are all in the i th row.
- If T is r-catabolizable, define $\operatorname{cat}_{r}(T)$ as follows:
- Take the tableau given by the first r rows of T and remove the occurrences of the smallest r letters. This gives the skew tableau U.
- Let V be the tableau given by the portion of T above the first r rows.
- Denote by $U V$ the skew tableau obtained by juxtaposing U to the northwest corner of V.
- Let $\operatorname{cat}_{r}(T)$ be the unique tableau that is Knuth equivalent to $U V$.

Example:

$$
\begin{aligned}
& r=2 \\
& T=\begin{array}{|llllll}
\hline 7 & & & \\
3 & 5 & 6 & & \\
2 & 2 & 4 & 8 & \\
\hline 1 & 1 & 1 & 3 & 4
\end{array} \quad U=\begin{array}{lll}
4 & 8 & \\
3 & 3 & 4
\end{array} \quad V=\begin{array}{lll}
\hline 7 & \\
\hline 3 & 5 & 6 \\
\hline
\end{array}
\end{aligned}
$$

Catabolism sequence

Definition

Let $r_{1}, r_{2}, \ldots, r_{m}$ be a sequence of positive integers. A tableau T is r_{1}, \ldots, r_{m}-catabolizable if there exists a sequence of tableaux $T_{0}=T, T_{1}, \ldots, T_{m}$ such that T_{i-1} is r_{i}-catabolizable with $T_{i}=\operatorname{cat}_{r_{i}}\left(T_{i-1}\right)$ for $i=1, \ldots, m$. Denote cat $r_{1}, r_{2}, \ldots, r_{i}(T)=T_{i}$.

Example: T is 2, 2, 1-catabolizable

$$
\begin{aligned}
& T=\begin{array}{|l|l|lll}
\hline 7 & & & \\
3 & 5 & 6 & & \\
2 & 2 & 4 & 8 & \\
\hline 1 & 1 & 1 & 3 & 4 \\
\hline
\end{array} \\
& \operatorname{cat}_{2}(T)=\begin{array}{llll}
\hline 8 & & \\
\hline & 4 & 7 & \\
3 & 3 & 5 & 6 \\
\hline
\end{array} \\
& \operatorname{cat}_{2,2}(T)=\begin{array}{l}
7 \\
\left.\begin{array}{l}
7 \\
5
\end{array}\right]
\end{array} \quad \operatorname{cat}_{2,2,1}(T)=\begin{array}{l}
8 \\
6
\end{array}
\end{aligned}
$$

Remarks about catabolism

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.

Remarks about catabolism

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.

Remarks about catabolism

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.
- If λ is a partition, then all (semistandard) tableaux of weight λ are $1^{\ell(\lambda)}$-catabolizable.

Remarks about catabolism

- Below all tableaux will have partition weight. Even in this case, a catabolism sequence needs not be a partition.
- Note that all tableaux are 1-catabolizable.
- If λ is a partition, then all (semistandard) tableaux of weight λ are $1^{\ell(\lambda)}$-catabolizable.
- On the other hand, the only $\ell(\lambda)$-catabolizable tableau of weight λ is the superstandard tableau, which is catabolizable with respect to every sequence.

Monotone row-chaining

If a row starts at column 0 , by convention we consider it to be chained on the left to row $\ell(\lambda)+1$.

Monotone row-chaining

If a row starts at column 0 , by convention we consider it to be chained on the left to row $\ell(\lambda)+1$.

Definition

Call a row-chaining scheme monotone if for $i<i^{\prime}$, if row i is chained on the left to row j and row i^{\prime} is chained on the left to row j^{\prime}, then either $j<j^{\prime}$ or $j=j^{\prime}=\ell(\lambda)+1$.

Monotone row-chaining

If a row starts at column 0 , by convention we consider it to be chained on the left to row $\ell(\lambda)+1$.

Definition

Call a row-chaining scheme monotone if for $i<i^{\prime}$, if row i is chained on the left to row j and row i^{\prime} is chained on the left to row j^{\prime}, then either $j<j^{\prime}$ or $j=j^{\prime}=\ell(\lambda)+1$.

Proposition

For each i, there exist constants b_{i}, d_{i} such that monotone row-chaining schemes can chain row i on the left to any row $j \in\left[i+b_{i}, i+d_{i}\right]$ but no other row.
(1) Suppose row i does not start at column 0 . Let rows $i-r, \ldots, i+s$ be the ones that begin at the same place as row i. Let rows $i^{\prime}, \ldots, i^{\prime \prime}$ be the ones that end at the same place as where row i begins. Then

$$
b_{i}=i^{\prime}+r-i, d_{i}=i^{\prime \prime}-s-i
$$

(2) If row i does start at column 0 , then

$$
b_{i}=d_{i}=\ell(\lambda)+1-i
$$

Tableau atoms

Definition

Let $\lambda \xrightarrow{\theta} \mu$ and define b_{i}, d_{i} as above. Define the tableau atom $\mathbb{A}_{\lambda, \mu}$ to be the set of tableaux of weight λ that are r_{1}, \ldots, r_{m}-catabolizable whenever
(1) $r_{1}+\ldots+r_{m}=\ell(\lambda)$, and
(2) $r_{i+1} \leq d_{r_{1}+\ldots+r_{i}+1}$ for $i=0, \ldots, m-1$.

Define $A_{\lambda, \mu}(z ; t)=\sum_{T \in \mathbb{A}_{\lambda, \mu}} t^{\text {charge }(T)} S_{\text {shape }(T)}(z)$.

Tableau atoms

Definition

Let $\lambda \xrightarrow{\theta} \mu$ and define b_{i}, d_{i} as above. Define the tableau atom $\mathbb{A}_{\lambda, \mu}$ to be the set of tableaux of weight λ that are r_{1}, \ldots, r_{m}-catabolizable whenever
(1) $r_{1}+\ldots+r_{m}=\ell(\lambda)$, and
(2) $r_{i+1} \leq d_{r_{1}+\ldots+r_{i}+1}$ for $i=0, \ldots, m-1$.

Define $A_{\lambda, \mu}(z ; t)=\sum_{T \in \mathbb{A}_{\lambda, \mu}} t^{\text {charge }(T)} S_{\text {shape }(T)}(z)$.
Let θ^{r} be the result of removing the first r rows of θ. Notice $\lambda^{r} \xrightarrow{\theta^{r}} \mu^{r}$ for $\lambda^{r}=\left(\lambda_{r+1}, \lambda_{r+2}, \ldots\right)$ and some partition μ^{r}. Then $\mathbb{A}_{\lambda, \mu}$ is the set of tableaux T of weight λ such that for every $r=1,2, \ldots, d_{1}$,
(1) T is r-catabolizable, and
(2) $\operatorname{cat}_{r}(T) \in \mathbb{A}_{\lambda^{r}, \mu^{r}}$.

Conjecture

$A_{\lambda, \mu}(z ; t)$ is the graded Frobenius characteristic of $M_{\lambda, \mu}$.

Conjecture

$A_{\lambda, \mu}(z ; t)$ is the graded Frobenius characteristic of $M_{\lambda, \mu}$.

Conjecture

If λ is k-bounded and $\mu=\left(\lambda^{[k]}\right)^{\prime}$ is the transpose of its k-conjugate, then $\mathbb{A}_{\lambda, \mu}$ coincides with the tableau atom $\mathbb{A}_{\lambda}^{(k)}$ of Lascoux, Lapointe and Morse.

Notable special cases

(1) When $\lambda=\mu, d_{1}=\ell(\lambda)$, so every $T \in \mathbb{A}_{\lambda, \lambda}$ is $\ell(\lambda)$-catabolizable. Thus $\mathbb{A}_{\lambda, \lambda}$ consists only of the superstandard tableau. It has charge 0 , so $A_{\lambda, \lambda}(z ; t)=S_{\lambda}(z)$ as required.

Notable special cases

(1) When $\lambda=\mu, d_{1}=\ell(\lambda)$, so every $T \in \mathbb{A}_{\lambda, \lambda}$ is $\ell(\lambda)$-catabolizable. Thus $\mathbb{A}_{\lambda, \lambda}$ consists only of the superstandard tableau. It has charge 0 , so $A_{\lambda, \lambda}(z ; t)=S_{\lambda}(z)$ as required.
(2) When $\mu=(n), d_{i}=1$ for all i, so $\mathbb{A}_{\lambda,(n)}$ consists of all $1^{\ell(\lambda)}$-catabolizable tableaux, i.e. all tableaux of weight λ. Thus

$$
\begin{aligned}
A_{\lambda,(n)}(z ; t) & =\sum_{\kappa} \sum_{T \in S S Y T(\kappa, \lambda)} t^{\operatorname{charge}(T)} S_{\kappa}(z) \\
& =\sum_{\kappa} K_{\kappa, \lambda}(t) S_{\kappa}(z) \\
& =H_{\lambda}(z ; t)
\end{aligned}
$$

Examples: Let $\lambda=(2,1,1,1)$. The skew-linking shapes for λ are

catabolism sequences $=$ all compositions of 4

$$
\mathbb{A}_{2111,2111}=\left\{\begin{array}{l}
\frac{4}{3} \\
3 \\
2 \\
\hline 1
\end{array}\right\}, A_{2111,2111}(z ; t)=t^{0} S_{2111}(z)
$$

$\square \quad \begin{array}{llll}\square & \left.\begin{array}{llll}b_{1}=1 & b_{2}=3 & b_{3}=2 & b_{4}=1 \\ d_{1}=3 & d_{2}=3 & d_{3}=2 & d_{4}=1\end{array}\right)\end{array}$
catabolism sequences $=$ all compositions of 4 except (4)

$$
\begin{aligned}
& \mathbb{A}_{2111,2111}=\left\{\begin{array}{lll}
\hline 3 & & \begin{array}{|c}
\frac{4}{3} \\
\hline
\end{array} \\
\hline 1 & 1 & , \\
\hline & \frac{2}{2} & \\
\hline & 1 & 1
\end{array}\right\} \\
& A_{2111,311}(z ; t)=t^{1} S_{311}(z)+t^{0} S_{2111}(z)
\end{aligned}
$$

catabolism sequences $=22,121,112,1111$
$A_{2111,32}(z ; t)=t^{2} S_{32}(z)+t^{1} S_{311}(z)+t^{0} S_{2111}(z)$

catabolism sequences $=121,112,1111$
$A_{211,41}(z ; t)=$
$t^{3} S_{41}(z)+t^{2} S_{32}(z)+t^{2} S_{311}(z)+t^{1} S_{311}(z)+t^{1} S_{221}(z)+t^{0} S_{2111}(z)$

catabolism sequences $=1111$

$$
\begin{gathered}
\mathbb{A}_{2111,5}=\cup_{\kappa} \operatorname{SSY}(\kappa, 2111) \\
A_{2111,5}(z ; t)=H_{2111}(z ; t)
\end{gathered}
$$

Weaker catabolism conditions

Conjecture

Let $\theta^{r}, \lambda^{r} \xrightarrow{\theta^{r}} \mu^{r}$ be as before. Let $i \in\left[b_{1}, d_{1}\right]$. Then $\mathbb{A}_{\lambda, \mu}$ is the set of tableaux T of weight λ such that for $r=1$ and $r=i$,
(1) T is r-catabolizable, and
(0) $\operatorname{cat}_{r}(T) \in \mathbb{A}_{\lambda^{r}, \mu^{r}}$.

Weaker catabolism conditions

Conjecture

Let $\theta^{r}, \lambda^{r} \xrightarrow{\theta^{r}} \mu^{r}$ be as before. Let $i \in\left[b_{1}, d_{1}\right]$. Then $\mathbb{A}_{\lambda, \mu}$ is the set of tableaux T of weight λ such that for $r=1$ and $r=i$,
(1) T is r-catabolizable, and
(2) $\operatorname{cat}_{r}(T) \in \mathbb{A}_{\lambda^{r}, \mu^{r}}$.

Remark: For $\mu=\lambda$ or $\mu=(n)$, we can check directly that the weaker catabolism condition suffices.

Weaker catabolism conditions

Conjecture

Let $\theta^{r}, \lambda^{r} \xrightarrow{\theta^{r}} \mu^{r}$ be as before. Let $i \in\left[b_{1}, d_{1}\right]$. Then $\mathbb{A}_{\lambda, \mu}$ is the set of tableaux T of weight λ such that for $r=1$ and $r=i$,
(1) T is r-catabolizable, and
(2) $\operatorname{cat}_{r}(T) \in \mathbb{A}_{\lambda^{r}, \mu^{r}}$.

Remark: For $\mu=\lambda$ or $\mu=(n)$, we can check directly that the weaker catabolism condition suffices.
Suppose λ is k-bounded and its $(k+1)$-core induces $\lambda \xrightarrow{\theta} \mu$. Let $h=k+1-\lambda_{1}$ (the height of the first part of λ 's k-split). Then

$$
b_{1} \leq h \leq d_{1} .
$$

Thus the catabolism requirement for $\mathbb{A}_{\lambda}^{(k)}$ of Lascoux, Lapointe, and Morse is a special case.

