
Modules for k-Atoms and a Combinatorial Formula

Li-Chung Chen

University of California, Berkeley

RTGC Workshop
June 2008

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 1 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Skew-linked partitions

Definition

Partitions λ and µ are skew linked, written

λ
θ→ µ

if there exists a skew diagram θ with the same row lengths (in order) as λ
and the same column lengths as µ.
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Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Definition (from previous slide)

Partitions λ and µ are skew linked, written

λ
θ→ µ

if there exists a skew diagram θ with the same row lengths (in order) as λ
and the same column lengths as µ.

Example:

λ θ

µ
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Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Some simple observations

Every partition is linked to itself: λ
λ→ λ.

Every λ is linked to the one-row partition (n).

λ

If λ
θ→ µ, then λ ≤ µ in the dominance partial ordering on partitions.

Transpose symmetry: λ
θ→ µ if and only if µ′

θ′
→ λ′

The two partitions λ and µ determine θ (and conversely, of course).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 4 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Some simple observations

Every partition is linked to itself: λ
λ→ λ.

Every λ is linked to the one-row partition (n).

λ

If λ
θ→ µ, then λ ≤ µ in the dominance partial ordering on partitions.

Transpose symmetry: λ
θ→ µ if and only if µ′

θ′
→ λ′

The two partitions λ and µ determine θ (and conversely, of course).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 4 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Some simple observations

Every partition is linked to itself: λ
λ→ λ.

Every λ is linked to the one-row partition (n).

λ

If λ
θ→ µ, then λ ≤ µ in the dominance partial ordering on partitions.

Transpose symmetry: λ
θ→ µ if and only if µ′

θ′
→ λ′

The two partitions λ and µ determine θ (and conversely, of course).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 4 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Some simple observations

Every partition is linked to itself: λ
λ→ λ.

Every λ is linked to the one-row partition (n).

λ

If λ
θ→ µ, then λ ≤ µ in the dominance partial ordering on partitions.

Transpose symmetry: λ
θ→ µ if and only if µ′

θ′
→ λ′

The two partitions λ and µ determine θ (and conversely, of course).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 4 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

Some simple observations

Every partition is linked to itself: λ
λ→ λ.

Every λ is linked to the one-row partition (n).

λ

If λ
θ→ µ, then λ ≤ µ in the dominance partial ordering on partitions.

Transpose symmetry: λ
θ→ µ if and only if µ′

θ′
→ λ′

The two partitions λ and µ determine θ (and conversely, of course).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 4 / 35



Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

The “k-atom” case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of
boxes in κ with hook-length at most k .
Example (k = 4):

λ θ

µ

Then θ skew-links a k-bounded partition λ to the transpose of its Lapointe-
Morse k-conjugate:

λ
θ→ µ = (λ[k])′
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Combinatorics of skew-linked partitions Definition and examples of skew linked partitions

The “k-atom” case

Let κ be a (k + 1)-core (no hook-length = k + 1), and let θ be the set of
boxes in κ with hook-length at most k .
Example (k = 4):

λ θ

µ

These cases, along with the µ = (n) cases, are the key examples!
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Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Decomposing a skew-linking shape θ into row chains

Consecutive columns in a skew-linking shape θ
always have r ≤ s, with r and s as shown at right.
Hence we can match the beginning of each row to
the end of some higher row.

s

{

}
r
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Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Example:
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Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Example:

Now we group the rows into partitions, according to how far each row is
from the end of its chain.

ν(1) ν(2) ν(3)
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Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Example:

A remarkable fact is that doing it by columns leads to the same tuple of
partitions.

ν(1) ν(2) ν(3)
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Combinatorics of skew-linked partitions Row chains in a skew-linking shape

Some other (easy) facts

The tuple of partitions
(ν(1), ν(2), . . . , ν(r))

associated to a skew-linked pair λ
θ→ µ has the following properties.

We have diagram containments

ν(1) ⊇ ν(2) ⊇ · · · ⊇ ν(r).

In particular,
γ =

def
(|ν(1)|, |ν(2)|, . . . , |ν(r)|)

is a partition.

The statistic

n(γ) =
def

∑
i

(i − 1) γi =
∑

i

(i − 1) |ν(i)|

is equal to the number of “missing boxes,” |β|, where θ = α/β.
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Constructing modules from skew-linked partitions How to construct small modules

How to construct small C[x] ∗ Sn modules

Note: “C[x] ∗ Sn module” = “C[x1, . . . , xn] module with Sn action.”

Motivation: How to construct irreducible Sn-modules.

Let V = ε ↑Sn
Sλ′

be the Sn module induced from the sign representation of
the Young subgroup Sλ′ .

Let W = 1 ↑Sn
Sλ

be induced from the trivial representation of the Young
subgroup Sλ.

The irreducible Vλ is the image of the essentially unique homomorphism

V →
φ

W .

This uniquely characterizes Vλ as

1 generated by an (essentially unique) Sλ′-antisymmetric element, and

2 co-generated by an (essentially unique) Sλ-invariant linear functional.
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Constructing modules from skew-linked partitions How to construct small modules

Question

Which C[x] ∗ Sn modules can be characterized in a similar fashion?

Let V =
(
ε ↑Sn

Sλ′

)
⊗ C[x], the free C[x] module on our previously

considered induced Sn module.

Let W =
(

1 ↑Sn
Sµ

)
⊗ C[x]∗, a co-free C[x] module on an induced Sn

module, but we may have µ 6= λ.

Let d be the smallest degree such that there is a non-zero Sn-module
homomorphism

ψ :
(
ε ↑Sn

Sλ′

)
⊗ C[x]d → 1 ↑Sn

Sµ
.

Suppose further that λ and µ are such that ψ is essentially unique.
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Constructing modules from skew-linked partitions How to construct small modules

With V =
(
ε ↑Sn

Sλ′

)
⊗ C[x] and W =

(
1 ↑Sn

Sµ

)
⊗ C[x]∗, let d = smallest

degree such that there is a non-zero homomorphism

ψ :
(
ε ↑Sn

Sλ′

)
⊗ C[x]d → 1 ↑Sn

Sµ
.

Suppose that λ and µ are such that ψ is essentially unique.

Proposition

With the above hypotheses, there is an essentially unique C[x] ∗ Sn

homomorphism, homogeneous of degree zero

φ : V →W [−d ].

Its image Mλ,µ is a graded C[x] ∗ Sn module uniquely characterized as

1 generated by an (essentially unique) Sλ′-antisymmetric element (in
degree 0), and

2 co-generated by an (essentially unique) Sµ-invariant linear functional
(on the top degree, which is equal to d).
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Constructing modules from skew-linked partitions Uniqueness theorem

Main theorem

Theorem (C)

1 The necessary and sufficient condition for the hypotheses of the
preceding proposition to hold is that λ be skew-linked to µ.

2 In that case, the degree d = (top degree of Mλ,µ) is equal to
n(γ) = |β|, where the skew diagram linking λ to µ is θ = α/β.

3 Moreover, the degree zero and top degree components of Mλ,µ are
irreducible Sn modules isomorphic to Vλ and Vµ, respectively.
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Constructing modules from skew-linked partitions Uniqueness theorem

Transpose symmetry

Recall V =
(
ε ↑Sn

Sλ′

)
⊗ C[x] and W =

(
1 ↑Sn

Sµ

)
⊗ C[x]∗. Suppose we

dualize the essentially unique φ : V →W [−d ], then tensor with ε, the sign
representation of Sn. The result is a nonzero homomorphism

σ :
(
ε ↑Sn

S(µ′)′

)
⊗ C[x]→

((
1 ↑Sn

Sλ′

)
⊗ C[x]∗

)
[−d ]. Since µ′

θ′
→ λ′ with the

same d , the image of σ is Mµ′,λ′ .

Thus we obtain Mµ′,λ′ from Mλ,µ by dualizing and tensoring with ε.
Dualizing reverses the degree, while tensoring with ε changes each copy of
Vα to Vα′ .

Proposition

Suppose the graded Frobenius characteristic of Mλ,µ is
∑

α fα(t)Sα(z),
where fα(t) ∈ N[t]. Then the graded Frobenius characteristic of Mµ′,λ′ is
td
∑

α fα(t−1)Sα′(z).
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Constructing modules from skew-linked partitions Uniqueness theorem

Special cases

If λ = µ, then Mλ,µ is just the irreducible Sn-module Vλ, in degree
zero, with the xi ’s annihilating it.

If µ = (n), then (by results of Garsia, Procesi and N. Bergeron),
Mλ,(n) is dual to the cohomology ring of the Springer variety Xλ.
Its graded Frobenius characteristic is equal to the Hall-Littlewood
polynomial

Hλ(z ; t) =
∑
κ

Kκ,λ(t)Sκ(z).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 14 / 35



Constructing modules from skew-linked partitions Uniqueness theorem

Special cases

If λ = µ, then Mλ,µ is just the irreducible Sn-module Vλ, in degree
zero, with the xi ’s annihilating it.

If µ = (n), then (by results of Garsia, Procesi and N. Bergeron),
Mλ,(n) is dual to the cohomology ring of the Springer variety Xλ.
Its graded Frobenius characteristic is equal to the Hall-Littlewood
polynomial

Hλ(z ; t) =
∑
κ

Kκ,λ(t)Sκ(z).

Chen (U.C. Berkeley) k-Atoms RTGC Workshop June 2008 14 / 35



Constructing modules from skew-linked partitions Uniqueness theorem

Special cases

If λ = µ, then Mλ,µ is just the irreducible Sn-module Vλ, in degree
zero, with the xi ’s annihilating it.

If µ = (n), then (by results of Garsia, Procesi and N. Bergeron),
Mλ,(n) is dual to the cohomology ring of the Springer variety Xλ.
Its graded Frobenius characteristic is equal to the Hall-Littlewood
polynomial

Hλ(z ; t) =
∑
κ

Kκ,λ(t)Sκ(z).

Remark: Garsia and Procesi prove the character formula directly from the
structure of the module. Conceivably, we might determine the character of
a general Mλ,µ by similarly elementary means.
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Constructing modules from skew-linked partitions Uniqueness theorem

Special cases

If λ = µ, then Mλ,µ is just the irreducible Sn-module Vλ, in degree
zero, with the xi ’s annihilating it.

If µ = (n), then (by results of Garsia, Procesi and N. Bergeron),
Mλ,(n) is dual to the cohomology ring of the Springer variety Xλ.
Its graded Frobenius characteristic is equal to the Hall-Littlewood
polynomial

Hλ(z ; t) =
∑
κ

Kκ,λ(t)Sκ(z).

Conjecture

If λ is k-bounded and µ = (λ[k])′ is the transpose of its k-conjugate, then
the graded Frobenius characteristic of Mλ,µ is equal to the k-atom

A
(k)
λ (z ; t) of Lascoux, Lapointe and Morse.
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Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

Bits of the proof of the uniqueness theorem

Goal: characterize λ, µ such that the space

HomSn

( (
ε ↑Sn

Sλ′

)
⊗ C[x]d , 1 ↑Sn

Sµ

)
has dimension 1 in the smallest degree d for which it is non-zero.

Lemma

The desired degree d is the minimum of∑
i ,j

(
ai ,j

2

)
over all non-negative integer matrices A with row sums µ and column
sums λ′.

The desired dimension-one condition holds if and only if the minimizing
matrix A is unique.
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Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

Proposition (C)

A matrix A with specified, weakly decreasing row and column sums
uniquely minimizes

∑
i ,j

(ai,j

2

)
iff it satisfies the following condition:

For every 2× 2 minor

(
a b
c d

)
of A, we have

(a + d)− (b + c) ≤ 1 if a, d > 0

(b + c)− (a + d) ≤ 1 if b, c > 0

Such a matrix A must have the entries ai ,j weakly decrease along rows and
columns, i.e., A is a plane partition.
Moreover, there exists such a matrix A with column sums λ′ and row sums
µ if and only λ is skew-linked to µ, in which case A is given by the plane
partition with layers (ν(1), ν(2), . . . , ν(r)).
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Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

Example:

λ

µ

A =


3 3 2 1 1
3 2 1 1 1
2 2 1 1 0
1 0 0 0 0
1 0 0 0 0


10
8
6
1
1

10 7 4 3 2

ν(1) ν(2) ν(3)
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Constructing modules from skew-linked partitions Bits of the proof of the uniqueness theorem

For the extra conclusion of the uniqueness theorem, that Mλ,µ is generated
by Vλ and co-generated by Vµ, we must also prove that〈

χλ ⊗ ch(C[x]d), χµ
〉
6= 0.

This follows from

1 d =
∑

i (i − 1) |ν(i)|, and

2 the Littlewood-Richardson coefficients cλ
ν(1),...,ν(r) and cµ

ν(1),...,ν(r) are

both non-zero.

The second point holds because λ =
⊔

i ν
(i) and µ =

∑
i ν

(i).

In fact, this implies that 〈
χλ ⊗ χγ , χµ

〉
= 1.

Note that λ′, µ and γ are the three projections of the plane partition given
by the matrix A.
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Combinatorial character formula Charge

Charge

Definition

Given a word of partition weight, label its letters in the following way.

Let ` = 0.

Starting from the end of the word and scanning backward, give label `
to the first 1, the first 2 following this 1, the first 3 following this 2,
and so on.

When the next letter (say p) is not found, start again at the end of
the word and increment ` by 1. Give label ` to the first p, the first
p + 1 following this p, and so on.

Keep scanning, incrementing ` as necessary, until one of each letter
has been labelled.

Repeat the above procedure on the unlabelled letters, each time
resetting ` = 0, until all letters have been labelled.
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Combinatorial character formula Charge

Definition (continued from previous slide)

The charge of the word is the sum of the labels. The charge of a tableau
with partition weight is the charge of its row-reading word.

Example: T =
3 6
2 2
1 1 3 4 5

,w = 362211345.

The labelling passes through w are

306220110345 3062201103415 306222011034152

30622020101034152 306220201010314152

Charge = 0 + 2 + 0 + 0 + 0 + 0 + 1 + 1 + 2 = 6.
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Combinatorial character formula Catabolism

One step of catabolism

Definition

A tableau T is r -catabolizable if its r smallest letters are in
superstandard position: For i = 1, . . . , r , the ith smallest letter in T
are all in the ith row.

If T is r -catabolizable, define catr (T ) as follows:

Take the tableau given by the first r rows of T and remove the
occurrences of the smallest r letters. This gives the skew tableau U.

Let V be the tableau given by the portion of T above the first r rows.

Denote by UV the skew tableau obtained by juxtaposing U to the
northwest corner of V .

Let catr (T ) be the unique tableau that is Knuth equivalent to UV .
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Combinatorial character formula Catabolism

Example:

r = 2

T =
7
3 5 6
2 2 4 8
1 1 1 3 4

U = 4 8
3 4

V = 7
3 5 6

UV =
4 8

3 4
7
3 5 6

≡
8
4 4 7
3 3 5 6

= catr (T )
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Combinatorial character formula Catabolism

Catabolism sequence

Definition

Let r1, r2, . . . , rm be a sequence of positive integers. A tableau T is
r1, . . . , rm-catabolizable if there exists a sequence of tableaux
T0 = T ,T1, . . . ,Tm such that Ti−1 is ri -catabolizable with
Ti = catri (Ti−1) for i = 1, . . . ,m. Denote catr1,r2,...,ri (T ) = Ti .

Example: T is 2, 2, 1-catabolizable

T =
7
3 5 6
2 2 4 8
1 1 1 3 4

cat2(T ) =
8
4 4 7
3 3 5 6

cat2,2(T ) = 7
5 6 8

cat2,2,1(T ) = 8
6 7
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Combinatorial character formula Catabolism

Remarks about catabolism

Below all tableaux will have partition weight. Even in this case, a
catabolism sequence needs not be a partition.

Note that all tableaux are 1-catabolizable.

If λ is a partition, then all (semistandard) tableaux of weight λ are
1`(λ)-catabolizable.

On the other hand, the only `(λ)-catabolizable tableau of weight λ is
the superstandard tableau, which is catabolizable with respect to
every sequence.
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Combinatorial character formula Row-chaining limits

Monotone row-chaining

If a row starts at column 0, by convention we consider it to be chained on
the left to row `(λ) + 1.

Definition

Call a row-chaining scheme monotone if for i < i ′, if row i is chained on
the left to row j and row i ′ is chained on the left to row j ′, then either
j < j ′ or j = j ′ = `(λ) + 1.

Proposition

For each i , there exist constants bi , di such that monotone row-chaining
schemes can chain row i on the left to any row j ∈ [i + bi , i + di ] but no
other row.
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Combinatorial character formula Row-chaining limits

1 Suppose row i does not start at column 0. Let rows i − r , . . . , i + s
be the ones that begin at the same place as row i . Let rows i ′, . . . , i ′′

be the ones that end at the same place as where row i begins. Then

bi = i ′ + r − i , di = i ′′ − s − i .

2 If row i does start at column 0, then

bi = di = `(λ) + 1− i .
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Combinatorial character formula Tableau atoms

Tableau atoms

Definition

Let λ
θ→ µ and define bi , di as above. Define the tableau atom Aλ,µ to be

the set of tableaux of weight λ that are r1, . . . , rm-catabolizable whenever

1 r1 + . . .+ rm = `(λ), and

2 ri+1 ≤ dr1+...+ri +1 for i = 0, . . . ,m − 1.

Define Aλ,µ(z ; t) =
∑

T∈Aλ,µ tcharge(T )Sshape(T )(z).

Let θr be the result of removing the first r rows of θ. Notice λr θr

→ µr for
λr = (λr+1, λr+2, . . .) and some partition µr . Then Aλ,µ is the set of
tableaux T of weight λ such that for every r = 1, 2, . . . , d1,

1 T is r -catabolizable, and

2 catr (T ) ∈ Aλr ,µr .
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Combinatorial character formula Tableau atoms

Conjecture

Aλ,µ(z ; t) is the graded Frobenius characteristic of Mλ,µ.

Conjecture

If λ is k-bounded and µ = (λ[k])′ is the transpose of its k-conjugate, then

Aλ,µ coincides with the tableau atom A(k)
λ of Lascoux, Lapointe and

Morse.
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Combinatorial character formula Tableau atoms

Notable special cases

1 When λ = µ, d1 = `(λ), so every T ∈ Aλ,λ is `(λ)-catabolizable.
Thus Aλ,λ consists only of the superstandard tableau. It has charge 0,
so Aλ,λ(z ; t) = Sλ(z) as required.

2 When µ = (n), di = 1 for all i , so Aλ,(n) consists of all

1`(λ)-catabolizable tableaux, i.e. all tableaux of weight λ. Thus

Aλ,(n)(z ; t) =
∑
κ

∑
T∈SSYT (κ,λ)

tcharge(T )Sκ(z)

=
∑
κ

Kκ,λ(t)Sκ(z)

= Hλ(z ; t).
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Combinatorial character formula Tableau atoms

Examples: Let λ = (2, 1, 1, 1). The skew-linking shapes for λ are

:
b1 = 4 b2 = 3 b3 = 2 b4 = 1
d1 = 4 d2 = 3 d3 = 2 d4 = 1

catabolism sequences = all compositions of 4

A2111,2111 =


4
3
2
1 1

 ,A2111,2111(z ; t) = t0S2111(z)
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Combinatorial character formula Tableau atoms

:
b1 = 1 b2 = 3 b3 = 2 b4 = 1
d1 = 3 d2 = 3 d3 = 2 d4 = 1

catabolism sequences = all compositions of 4 except (4)

A2111,2111 =

 3
2
1 1 4

,

4
3
2
1 1


A2111,311(z ; t) = t1S311(z) + t0S2111(z)
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Combinatorial character formula Tableau atoms

:
b1 = 2 b2 = 1 b3 = 2 b4 = 1
d1 = 2 d2 = 2 d3 = 2 d4 = 1

catabolism sequences = 22, 121, 112, 1111

A2111,32 =

 2 4
1 1 3

,
3
2
1 1 4

,

4
3
2
1 1


A2111,32(z ; t) = t2S32(z) + t1S311(z) + t0S2111(z)
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Combinatorial character formula Tableau atoms

:
b1 = 1 b2 = 1 b3 = 2 b4 = 1
d1 = 1 d2 = 2 d3 = 2 d4 = 1

catabolism sequences = 121, 112, 1111

A2111,41 =

 2
1 1 3 4

, 2 4
1 1 3

,
4
2
1 1 3

,
3
2
1 1 4

,
3
2 4
1 1

,

4
3
2
1 1


A2111,41(z ; t) =

t3S41(z) + t2S32(z) + t2S311(z) + t1S311(z) + t1S221(z) + t0S2111(z)
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Combinatorial character formula Tableau atoms

:
b1 = 1 b2 = 1 b3 = 1 b4 = 1
d1 = 1 d2 = 1 d3 = 1 d4 = 1

catabolism sequences = 1111

A2111,5 = ∪κSSYT (κ, 2111)

A2111,5(z ; t) = H2111(z ; t)
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Combinatorial character formula Weaker catabolism conditions

Weaker catabolism conditions

Conjecture

Let θr , λr θr

→ µr be as before. Let i ∈ [b1, d1]. Then Aλ,µ is the set of
tableaux T of weight λ such that for r = 1 and r = i ,

1 T is r -catabolizable, and

2 catr (T ) ∈ Aλr ,µr .

Remark: For µ = λ or µ = (n), we can check directly that the weaker
catabolism condition suffices.
Suppose λ is k-bounded and its (k + 1)-core induces λ

θ→ µ. Let
h = k + 1− λ1 (the height of the first part of λ’s k-split). Then

b1 ≤ h ≤ d1.

Thus the catabolism requirement for A(k)
λ of Lascoux, Lapointe, and

Morse is a special case.
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