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Catabolism Definition of catabolism

Catabolism

Definition

A semistandard tableau T of partition weight µ is t-catabolizable if entries
1 through t occupy shape (µ1, . . . , µt).

Example: A 3-catabolizable tableau.

T =

5

4 4 6 6

3 3 3 5 7

2 2 2 2 4

1 1 1 1 1 5 6 7 8
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Catabolism Definition of catabolism

Definition

If catabolizable, we t-catabolize T as follows.

First split T at the t-th row. . .
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Catabolism Definition of catabolism

Definition

If catabolizable, we t-catabolize T as follows.

Drop entries 1 through t. . .
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Catabolism Definition of catabolism

Definition

If catabolizable, we t-catabolize T as follows.

Swap the upper and lower parts. . .
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Catabolism Definition of catabolism

Definition

If catabolizable, we t-catabolize T as follows.

Then rectify by jeu de taquin.

5 7

4

5 6 7 8
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Catabolism Definition of catabolism

Definition

If catabolizable, we t-catabolize T as follows.

Then rectify by jeu de taquin.
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Catabolism Definition of catabolism

In this example, the resulting 3-catabolism of T

7

6

5 5 5 7 8

4 4 4 6 6

is itself 2-catabolizable.

If we then 2-catabolize it

we get a 3-catabolizable tableau.
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Catabolism Definition of catabolism

Therefore, we say that the tableau we started with

T =

5

4 4 6 6

3 3 3 5 7

2 2 2 2 4

1 1 1 1 1 5 6 7 8

is (3, 2, 3)-catabolizable.

More generally,

Definition

Given a composition τ = (τ1, τ2, . . . , τk), a tableau T of partition weight is
τ -catabolizable if it is τ1-catabolizable, and, inductively, its τ1-catabolism
is (τ2, . . . , τk)-catabolizable.
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Catabolism Definition of catabolism

Catabolism was introduced by Lascoux and Schützenberger as a device for
computing the charge of T .

If T is t-catabolizable, then t-catabolizing it
decreases the charge by an amount equal to the size of the lower chunk.

A related operation is cyclage: row-uninsert any entry x > 1 from T , then
column-insert x into the tableau S that remains.
Example:

T =
3 4

2 2 3 4

1 1 1 2

S =
3

2 2 4 4

1 1 1 3

x = 2

T ′ =
3

2 2 2 4

1 1 1 3 4

Cyclage decreases charge by 1, i.e., c(T ′) = c(T )− 1. (The assertion
about catabolism follows from this and the jeu de taquin invariance of
charge.)
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Catabolism Basic conjectures

Many elementary properties of catabolism are still unproven.

Conjecture

If σ is a refinement of τ , and T is τ -catabolizable, then T is
σ-catabolizable.

If T ′ is a cyclage of T , and T ′ is τ -catabolizable, then so is T .

(L-C. Chen) The 1-catabolism of T and its “1-rolling” admit the
same catabolizabilities.

The number of τ -catabolizable tableaux of weight µ and shape λ is
the Littlewood-Richardson coefficient

cλ
µ(1),...,µ(k) ,

where µ(1) is the first τ1 parts of µ, µ(2) is the next τ2 parts, and so
on.
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Vector bundles on the flag variety Notations

Vector bundles on the flag variety

Some Notation

Group Lie algebra

G general linear group GLm glm
B upper triangular matrices b

U unipotents in B n

G/B = flag variety. T ∗(G/B) = G ×B n = cotangent bundle.

We have

G -invariant sub-bundles G ×B j ⊆ T ∗(G/B)

↔ B-submodules j ⊆ n

↔ upper order ideals of positive roots

↔ partitions ⊆ (m − 1,m − 2, . . . , 1)

Example (in gl6):

j =
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Vector bundles on the flag variety Notations

To each composition τ of m corresponds a parabolic subgroup Pτ ⊆ GLm

of block upper triangular matrices.

The pullback of T ∗(G/Pτ ) is G ×B j for j = n(Pτ ) = block strictly upper
triangular matrices.

Example (in gl8):

n(P(3,2,3)) =

Definition

A tableau T is j-catabolizable if T is τ -catabolizable for every τ such that
j ⊆ n(Pτ )

Assuming the refinement conjecture holds, τ -catabolizability is equivalent
to n(Pτ )-catabolizability.
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Vector bundles on the flag variety Notations

Example: For

j = ,

T is j-catabolizable iff it admits the τ -catabolizabilities below (and their
refinements):

τ = (1, 2, 2, 1) , τ = (1, 2, 1, 2) ,

τ = (1, 1, 3, 1) , τ = (1, 1, 2, 2) .
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Vector bundles on the flag variety Main conjectures

Conjectured generalization of the Borel–Weil–Bott theorem

Let Cµ = 1-dimensional B-module with weight µ.

Let w0 denote the longest element in the Weyl group, i.e., the
permutation 12 . . .m 7→ m . . . 21.

Recall the classical theorem of Borel, Weil, Bott.

Theorem

For µ a dominant weight of G, the line bundle Lµ = G ×B Cw0(µ) satisfies

1 H0(G/B,Lµ) is the irreducible G-module Vµ with highest weight µ.

2 H i (G/B,Lµ) = 0 for i > 0.

For G = GLm, dominant weights are essentially partitions with at most m
parts, and the character of Vµ is the Schur function sµ(x1, . . . , xm).
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Vector bundles on the flag variety Main conjectures

Theorem (from previous slide)

For µ a dominant weight of G, the line bundle Lµ = G ×B Cw0(µ) satisfies

1 H0(G/B,Lµ) is the irreducible G-module Vµ with highest weight µ.

2 H i (G/B,Lµ) = 0 for i > 0.

Conjecture

For µ a dominant weight of GLm, the pullback of Lµ to G ×B j satisfies

1 H0(G ×B j,Lµ) has graded character∑
λ

∑
T∈SSYT (λ,µ)

T is j-catabolizable

qc(T )sλ(x)

2 H i (G ×B j,Lµ) = 0 for i > 0.

In the case j = n(Pτ ), Conjecture (1) is due to Shimozono–Weyman, and
Conjecture (2) to Broer.
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Vector bundles on the flag variety Character formula

Proposition

Assuming the preceding conjecture holds, the generating function for
j-catabolizable tableaux of weight µ is given by the formula

∑
λ

∑
T∈SSYT (λ,µ)

T is j-catabolizable

qc(T )sλ(x) = Ψ

∏
eij∈j

1

1− q xi/xj
xµ


pol

,

where

Ψ xν =

{
(−1)l(w)sw(ν+ρ)−ρ for w(ν + ρ) regular and dominant

0 if ν + ρ is not regular.

Here ρ = (m − 1,m − 2, . . . , 0).

In any case, the right-hand side gives the graded character of the virtual
representation

∑
i (−1)i

[
H i (G ×B j,Lµ)

]
.
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Graded Sn-modules and k-Schur functions Chen’s modules

Li-Chung Chen’s modules

Definition

Partitions µ and λ are skew linked, written µ
θ→ λ, if there exists a skew

diagram θ with the same row lengths (in order) as µ and the same column
lengths as λ.

Example:

µ θ

λ
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Graded Sn-modules and k-Schur functions Chen’s modules

Proposition (L-C. Chen)

Suppose µ
θ→ λ are partitions of n. Let d = |β|, where θ = α/β (example

below).

There is a unique graded, Sn-equivariant C[y1, . . . , yn]-module Mµ,λ,
generated by its degree 0 part, which is irreducible with character χµ as an
Sn-module, and co-generated by its degree d part, which is irreducible
with character χλ.

θ = d = 12

Haiman & Chen (U.C. Berkeley) Modules and flag varieties AMS Raleigh April 4, 2009 15 / 23



Graded Sn-modules and k-Schur functions Chen’s modules

Example:

µ θ

λ

ch(Mµ,λ)

q4

q3 +

q2 + +

q1 + +

q0

In this example, θ is the outer zone of a (3+1)-core, λ′ is the 3-conjugate
of the 3-bounded partition µ, and ch(Mµ,λ) coincides with the

Lascoux–Lapointe–Morse 3-atom A
(3)
µ (x; q) = A

(3)
(3,2,2,1)(x; q).
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Graded Sn-modules and k-Schur functions Chen’s modules

Conjecture

Let µ be k-bounded and let λ′ be its k-conjugate. (Recall that, by

definition, this means µ
α/β→ λ, where α is a (k + 1)-core and β ⊆ α is the

set of boxes with hook-length > k + 1.) Then we have

A(k)
µ (x; q) = ch(Mµ,λ).

The k-atoms are defined combinatorially, as generating functions for
tableaux admitting certain catabolizabilities. (The original definition also
involves “rolling,” but Chen’s 1-rolling conjecture implies a reformulation
in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module Mµ,λ has graded character
matching that of H0(G ×B j,Lµ) for a special choice of j.

If so, then as we have seen, we can conjecturally express this character
both as a generating function for catabolizable tableaux, and by an explicit
raising operator formula.

Haiman & Chen (U.C. Berkeley) Modules and flag varieties AMS Raleigh April 4, 2009 17 / 23



Graded Sn-modules and k-Schur functions Chen’s modules

Conjecture

Let µ be k-bounded and let λ′ be its k-conjugate. (Recall that, by

definition, this means µ
α/β→ λ, where α is a (k + 1)-core and β ⊆ α is the

set of boxes with hook-length > k + 1.) Then we have

A(k)
µ (x; q) = ch(Mµ,λ).

The k-atoms are defined combinatorially, as generating functions for
tableaux admitting certain catabolizabilities. (The original definition also
involves “rolling,” but Chen’s 1-rolling conjecture implies a reformulation
in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module Mµ,λ has graded character
matching that of H0(G ×B j,Lµ) for a special choice of j.

If so, then as we have seen, we can conjecturally express this character
both as a generating function for catabolizable tableaux, and by an explicit
raising operator formula.

Haiman & Chen (U.C. Berkeley) Modules and flag varieties AMS Raleigh April 4, 2009 17 / 23



Graded Sn-modules and k-Schur functions Chen’s modules

Conjecture

Let µ be k-bounded and let λ′ be its k-conjugate. (Recall that, by

definition, this means µ
α/β→ λ, where α is a (k + 1)-core and β ⊆ α is the

set of boxes with hook-length > k + 1.) Then we have

A(k)
µ (x; q) = ch(Mµ,λ).

The k-atoms are defined combinatorially, as generating functions for
tableaux admitting certain catabolizabilities. (The original definition also
involves “rolling,” but Chen’s 1-rolling conjecture implies a reformulation
in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module Mµ,λ has graded character
matching that of H0(G ×B j,Lµ) for a special choice of j.

If so, then as we have seen, we can conjecturally express this character
both as a generating function for catabolizable tableaux, and by an explicit
raising operator formula.

Haiman & Chen (U.C. Berkeley) Modules and flag varieties AMS Raleigh April 4, 2009 17 / 23



Graded Sn-modules and k-Schur functions Chen’s modules

Conjecture

Let µ be k-bounded and let λ′ be its k-conjugate. (Recall that, by

definition, this means µ
α/β→ λ, where α is a (k + 1)-core and β ⊆ α is the

set of boxes with hook-length > k + 1.) Then we have

A(k)
µ (x; q) = ch(Mµ,λ).

The k-atoms are defined combinatorially, as generating functions for
tableaux admitting certain catabolizabilities. (The original definition also
involves “rolling,” but Chen’s 1-rolling conjecture implies a reformulation
in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module Mµ,λ has graded character
matching that of H0(G ×B j,Lµ) for a special choice of j.

If so, then as we have seen, we can conjecturally express this character
both as a generating function for catabolizable tableaux, and by an explicit
raising operator formula.

Haiman & Chen (U.C. Berkeley) Modules and flag varieties AMS Raleigh April 4, 2009 17 / 23



Graded Sn-modules and k-Schur functions Back to the flag variety

Chen’s modules and the flag variety

Consecutive columns in a skew-linking shape θ
always have r ≤ s, with r and s as shown at right.
Hence we can match the beginning of each row to
the end of some higher row.

We break ties by matching the highest available row.

s

{

}
r

Example:
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Graded Sn-modules and k-Schur functions Back to the flag variety

Let f (i) index the row matched to the i-th row.

i f (i)

10 ∞
9 ∞
8 ∞
7 ∞
6 ∞
5 10
4 7
3 6
2 5
1 4

Then define j(θ) = 〈eij | j ≥ f (i)〉 (for this example, in gl10).
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Graded Sn-modules and k-Schur functions Back to the flag variety

Conjecture (L-C. Chen)

Suppose µ
θ→ λ. Under the Frobenius map χλ 7→ sλ(x), the graded Sn

character of Mµ,λ is given by the formula∑
λ

∑
T∈SSYT (λ,µ)

T is j(θ)-catabolizable

qc(T )sλ(x),

which we also conjecture is the graded GLm character of
H0(G ×B j(θ),Lµ).

In particular, we obtain an explicit raising operator formula for the

k-atoms A
(k)
µ (x; q).

Remark: In the k-atom case, the constraint that T be j(θ)-catabolizable is
a priori stronger than the catabolizability constraint in the original
definition by Lascoux, Lapointe and Morse. But it appears to pick out the
same set of tableaux.
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Graded Sn-modules and k-Schur functions Back to the flag variety

Define Nµ,j = H0(G ×B j,Lµ). We expect the identity of characters
conjectured on the previous slide to reflect a simple relationship between
Mµ,λ and Nµ,j(θ).

Take m = n. Since Nµ,j(θ) is a GLn-equivariant C[gln]-module, its 0-weight
space∗ is an Sn-equivariant C[y1, . . . , yn]-module.

Conjecture

With the preceding definitions, the 0-weight space of Nµ,j(θ) is isomorphic
to Mµ,λ.

[∗for experts: we mean the 0-weight space with respect to SLn of the
polynomial part of this GLn-module.]
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Graded Sn-modules and k-Schur functions Back to the flag variety

Conundrums

For fun, we’ll finish by listing some of the “known” ways to compute

A
(k)
µ (x; q). To the best of my knowldege, no two of these have yet been

proven equivalent.

(More is known when q = 1, but I won’t discuss that here.)
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Graded Sn-modules and k-Schur functions Back to the flag variety

1 Original definition (Lascoux, Lapointe, Morse) as a generating
function for tableaux satisfying catabolizability and rolling constraints

2 Chen’s variant, picking out supposedly the same set of tableaux with
different catabolizability constraints

3 Construction using symmetric function creation and filtering operators
(Lapointe, Morse)

4 Graded character of Mµ,λ

5 Graded character of Nµ,j(θ)

6 Raising operator formula for the preceding
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