k-Schur functions, graded S_n modules, and the flag variety

Mark Haiman Li-Chung Chen

University of California, Berkeley

AMS Southeastern Section Meeting NC State University April 4, 2009

Catabolism

Definition

A semistandard tableau T of partition weight μ is *t*-catabolizable if entries 1 through t occupy shape (μ_1, \ldots, μ_t) .

3

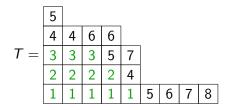
< <>></>

Catabolism

Definition

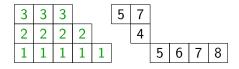
A semistandard tableau T of partition weight μ is *t*-catabolizable if entries 1 through *t* occupy shape (μ_1, \ldots, μ_t) .

Example: A 3-catabolizable tableau.



If catabolizable, we *t*-catabolize T as follows.

First split T at the t-th row...



If catabolizable, we *t*-catabolize T as follows.

Drop entries 1 through t...

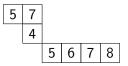


Image: Image:

Haiman & Chen (U.C. Berkeley)

Modules and flag varieties

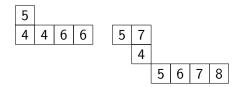
AMS Raleigh April 4, 2009

э

3 / 23

If catabolizable, we *t*-catabolize T as follows.

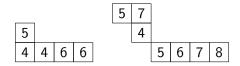
Swap the upper and lower parts...



-

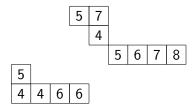
If catabolizable, we *t*-catabolize T as follows.

Swap the upper and lower parts...



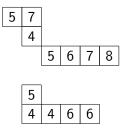
If catabolizable, we *t*-catabolize T as follows.

Swap the upper and lower parts...



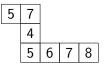
If catabolizable, we *t*-catabolize T as follows.

Swap the upper and lower parts...



If catabolizable, we *t*-catabolize T as follows.

Swap the upper and lower parts...



If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

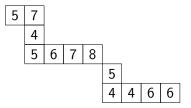


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

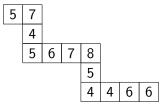


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

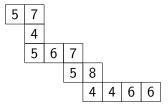


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.



Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

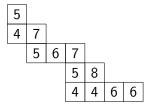


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

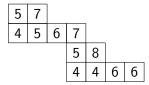


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

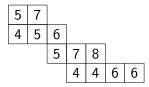


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

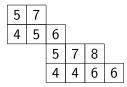


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

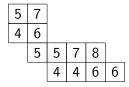
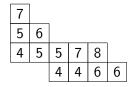


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.



If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

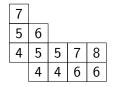


Image: Image:

If catabolizable, we *t*-catabolize T as follows.

Then rectify by jeu de taquin.

7				
6				
5	5	5	7	8
4	4	4	6	6

3 1 4

Image: Image:

3

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable.

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable. If we then 2-catabolize it

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable. If we then 2-catabolize it

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable. If we then 2-catabolize it

7	8	
6	6	7
		6

Haiman & Chen (U.C. Berkeley)

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable. If we then 2-catabolize it

7	8	
6	7	
	6	6

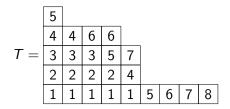
Haiman & Chen (U.C. Berkeley)

7				
6				
5	5	5	7	8
4	4	4	6	6

is itself 2-catabolizable. If we then 2-catabolize it

we get a 3-catabolizable tableau.

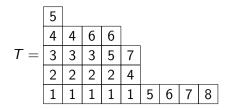
Therefore, we say that the tableau we started with



is (3, 2, 3)-catabolizable.

Haiman & Chen (U.C. Berkeley)

Therefore, we say that the tableau we started with



is (3, 2, 3)-catabolizable.

More generally,

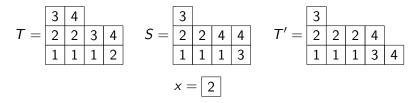
Definition

Given a composition $\tau = (\tau_1, \tau_2, \ldots, \tau_k)$, a tableau T of partition weight is τ -catabolizable if it is τ_1 -catabolizable, and, inductively, its τ_1 -catabolism is (τ_2, \ldots, τ_k) -catabolizable.

Catabolism was introduced by Lascoux and Schützenberger as a device for computing the *charge* of T.

Catabolism was introduced by Lascoux and Schützenberger as a device for computing the *charge* of T. If T is *t*-catabolizable, then *t*-catabolizing it decreases the charge by an amount equal to the size of the lower chunk.

Catabolism was introduced by Lascoux and Schützenberger as a device for computing the *charge* of T. If T is *t*-catabolizable, then *t*-catabolizing it decreases the charge by an amount equal to the size of the lower chunk. A related operation is *cyclage*: row-uninsert any entry x > 1 from T, then column-insert x into the tableau S that remains. Example:



Cyclage decreases charge by 1, *i.e.*, c(T') = c(T) - 1. (The assertion about catabolism follows from this and the *jeu de taquin* invariance of charge.)

Many elementary properties of catabolism are still unproven.

Conjecture

• If σ is a refinement of τ , and T is τ -catabolizable, then T is σ -catabolizable.

Many elementary properties of catabolism are still unproven.

Conjecture

- If σ is a refinement of τ , and T is τ -catabolizable, then T is σ -catabolizable.
- If T' is a cyclage of T, and T' is τ -catabolizable, then so is T.

Many elementary properties of catabolism are still unproven.

Conjecture

- If σ is a refinement of τ , and T is τ -catabolizable, then T is σ -catabolizable.
- If T' is a cyclage of T, and T' is τ -catabolizable, then so is T.
- (L-C. Chen) The 1-catabolism of T and its '1-rolling" admit the same catabolizabilities.

Many elementary properties of catabolism are still unproven.

Conjecture

- If σ is a refinement of τ , and T is τ -catabolizable, then T is σ -catabolizable.
- If T' is a cyclage of T, and T' is τ -catabolizable, then so is T.
- (L-C. Chen) The 1-catabolism of T and its '1-rolling" admit the same catabolizabilities.
- The number of τ -catabolizable tableaux of weight μ and shape λ is the Littlewood-Richardson coefficient

$$c^{\lambda}_{\mu^{(1)},\ldots,\mu^{(k)}},$$

where $\mu^{(1)}$ is the first τ_1 parts of μ , $\mu^{(2)}$ is the next τ_2 parts, and so on.

Vector bundles on the flag variety

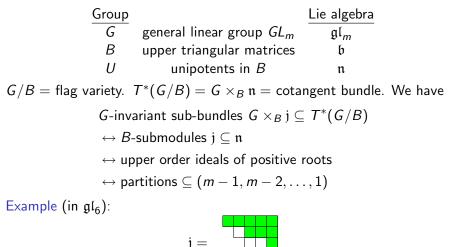
Some Notation

Group		Lie algebra
G	general linear group GL_m	$\overline{\mathfrak{gl}_m}$
В	upper triangular matrices	b
U	unipotents in <i>B</i>	n

G/B = flag variety. $T^*(G/B) = G \times_B \mathfrak{n} =$ cotangent bundle.

Vector bundles on the flag variety

Some Notation

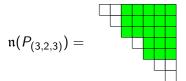


8 / 23

To each composition τ of *m* corresponds a parabolic subgroup $P_{\tau} \subseteq GL_m$ of block upper triangular matrices.

The pullback of $T^*(G/P_{\tau})$ is $G \times_B \mathfrak{j}$ for $\mathfrak{j} = \mathfrak{n}(P_{\tau}) = \text{block strictly upper triangular matrices.}$

Example (in \mathfrak{gl}_8):



3

To each composition τ of *m* corresponds a parabolic subgroup $P_{\tau} \subseteq GL_m$ of block upper triangular matrices.

The pullback of $T^*(G/P_{\tau})$ is $G \times_B \mathfrak{j}$ for $\mathfrak{j} = \mathfrak{n}(P_{\tau}) = \text{block strictly upper triangular matrices.}$

Example (in \mathfrak{gl}_8):

$$\mathfrak{n}(P_{(3,2,3)}) =$$

Definition

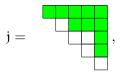
A tableau T is j-catabolizable if T is τ -catabolizable for every τ such that $\mathfrak{j} \subseteq \mathfrak{n}(P_{\tau})$

Assuming the refinement conjecture holds, τ -catabolizability is equivalent to $\mathfrak{n}(P_{\tau})$ -catabolizability.

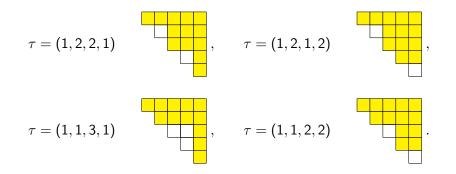
Haiman & Chen (U.C. Berkeley)

イロト 不得下 イヨト イヨト

Example: For



T is j-catabolizable iff it admits the τ -catabolizabilities below (and their refinements):



Conjectured generalization of the Borel-Weil-Bott theorem

Let $\mathbb{C}_{\mu} = 1$ -dimensional *B*-module with weight μ .

Let w_0 denote the longest element in the Weyl group, *i.e.*, the permutation $12 \dots m \mapsto m \dots 21$.

Recall the classical theorem of Borel, Weil, Bott.

Theorem

For μ a dominant weight of G, the line bundle L_μ = G ×_B C_{w₀(μ)} satisfies
H⁰(G/B, L_μ) is the irreducible G-module V_μ with highest weight μ.
Hⁱ(G/B, L_μ) = 0 for i > 0.

Conjectured generalization of the Borel-Weil-Bott theorem

Let $\mathbb{C}_{\mu} = 1$ -dimensional *B*-module with weight μ .

Let w_0 denote the longest element in the Weyl group, *i.e.*, the permutation $12 \dots m \mapsto m \dots 21$.

Recall the classical theorem of Borel, Weil, Bott.

Theorem

For μ a dominant weight of G, the line bundle L_μ = G ×_B C_{w₀(μ)} satisfies
H⁰(G/B, L_μ) is the irreducible G-module V_μ with highest weight μ.
Hⁱ(G/B, L_μ) = 0 for i > 0.

For $G = GL_m$, dominant weights are essentially partitions with at most m parts, and the character of V_{μ} is the Schur function $s_{\mu}(x_1, \ldots, x_m)$.

A B M A B M

Theorem (from previous slide)

For μ a dominant weight of G, the line bundle $\mathcal{L}_{\mu} = G \times_B \mathbb{C}_{w_0(\mu)}$ satisfies

• $H^0(G/B, \mathcal{L}_{\mu})$ is the irreducible G-module V_{μ} with highest weight μ . 2 $H^{i}(G/B, \mathcal{L}_{\mu}) = 0$ for i > 0.

3

Theorem (from previous slide)

For μ a dominant weight of G, the line bundle $\mathcal{L}_{\mu} = G \times_B \mathbb{C}_{w_0(\mu)}$ satisfies 4 $H^0(G/B, \mathcal{L}_{\mu})$ is the irreducible G-module V_{μ} with highest weight μ . 5 $H^i(G/B, \mathcal{L}_{\mu}) = 0$ for i > 0.

Conjecture

For μ a dominant weight of GL_m , the pullback of \mathcal{L}_{μ} to $G \times_B \mathfrak{j}$ satisfies $\mathbf{I} H^0(G \times_B \mathfrak{j}, \mathcal{L}_{\mu})$ has graded character

$$\sum_{\substack{\lambda \\ T \text{ is j-catabolizable}}} q^{c(T)} s_{\lambda}(\textbf{x})$$

 $H^i(G \times_B \mathfrak{j}, \mathcal{L}_{\mu}) = 0 \text{ for } i > 0.$

Theorem (from previous slide)

For μ a dominant weight of G, the line bundle $\mathcal{L}_{\mu} = G \times_{B} \mathbb{C}_{w_{0}(\mu)}$ satisfies • $H^0(G/B, \mathcal{L}_{\mu})$ is the irreducible G-module V_{μ} with highest weight μ . 2 $H^{i}(G/B, \mathcal{L}_{\mu}) = 0$ for i > 0.

Conjecture

For μ a dominant weight of GL_m , the pullback of \mathcal{L}_{μ} to $G \times_B \mathfrak{j}$ satisfies • $H^0(G \times_B \mathfrak{j}, \mathcal{L}_{\mu})$ has graded character

$$\sum_{\lambda} \sum_{T \in C(T)} q^{c(T)} s_{\lambda}(\mathbf{x})$$

 $I \in SSYI(\lambda, \mu)$ T is j-catabolizable

2 $H^i(G \times_B \mathfrak{j}, \mathcal{L}_{\mu}) = 0$ for i > 0.

In the case $\mathfrak{j} = \mathfrak{n}(P_{\tau})$, Conjecture (1) is due to Shimozono–Weyman, and Conjecture (2) to Broer.

Haiman & Chen (U.C. Berkeley)

3

12 / 23

Proposition

Assuming the preceding conjecture holds, the generating function for j-catabolizable tableaux of weight μ is given by the formula

$$\sum_{\lambda} \sum_{\substack{T \in SSYT(\lambda,\mu) \\ T \text{ is j-catabolizable}}} q^{c(T)} s_{\lambda}(\mathbf{x}) = \Psi \left(\prod_{e_{ij} \in j} \frac{1}{1 - q x_i / x_j} x^{\mu} \right)_{\text{pol}},$$

where

$$\Psi x^{\nu} = \begin{cases} (-1)^{l(w)} s_{w(\nu+\rho)-\rho} & \text{for } w(\nu+\rho) \text{ regular and dominant} \\ 0 & \text{if } \nu+\rho \text{ is not regular.} \end{cases}$$

Here
$$\rho = (m - 1, m - 2, ..., 0)$$
.

3

Proposition

Assuming the preceding conjecture holds, the generating function for j-catabolizable tableaux of weight μ is given by the formula

$$\sum_{\lambda} \sum_{\substack{T \in SSYT(\lambda,\mu) \\ T \text{ is j-catabolizable}}} q^{c(T)} s_{\lambda}(\mathbf{x}) = \Psi \left(\prod_{e_{ij} \in j} \frac{1}{1 - q x_i / x_j} x^{\mu} \right)_{\text{pol}},$$

where

$$\Psi x^{\nu} = \begin{cases} (-1)^{l(w)} s_{w(\nu+\rho)-\rho} & \text{for } w(\nu+\rho) \text{ regular and dominant} \\ 0 & \text{if } \nu+\rho \text{ is not regular.} \end{cases}$$

Here $\rho = (m - 1, m - 2, ..., 0)$.

In any case, the right-hand side gives the graded character of the virtual representation $\sum_{i} (-1)^{i} [H^{i}(G \times_{B} j, \mathcal{L}_{\mu})].$

13 / 23

A D > A A P >

Li-Chung Chen's modules

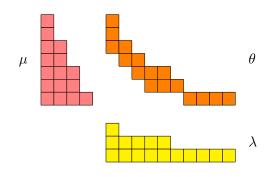
Definition

Partitions μ and λ are *skew linked*, written $\mu \xrightarrow{\theta} \lambda$, if there exists a skew diagram θ with the same row lengths (in order) as μ and the same column lengths as λ .

Li-Chung Chen's modules

Definition

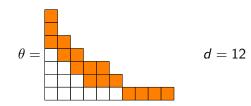
Partitions μ and λ are *skew linked*, written $\mu \xrightarrow{\theta} \lambda$, if there exists a skew diagram θ with the same row lengths (in order) as μ and the same column lengths as λ .



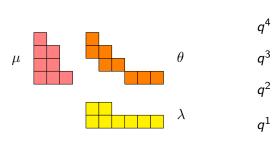
Proposition (L-C. Chen)

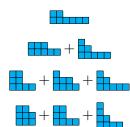
Suppose $\mu \xrightarrow{\theta} \lambda$ are partitions of *n*. Let $d = |\beta|$, where $\theta = \alpha/\beta$ (example below).

There is a unique graded, S_n -equivariant $\mathbb{C}[y_1, \ldots, y_n]$ -module $\mathcal{M}_{\mu,\lambda}$, generated by its degree 0 part, which is irreducible with character χ^{μ} as an S_n -module, and co-generated by its degree d part, which is irreducible with character χ^{λ} .



Example:



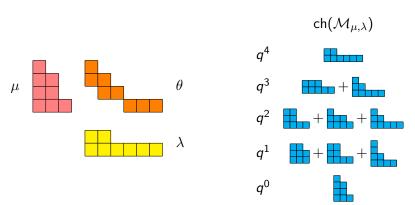


 $\mathsf{ch}(\mathcal{M}_{\mu,\lambda})$

 q^0

문 문 문

Example:



In this example, θ is the outer zone of a (3+1)-core, λ' is the 3-conjugate of the 3-bounded partition μ , and ch $(\mathcal{M}_{\mu,\lambda})$ coincides with the Lascoux–Lapointe–Morse 3-atom $A^{(3)}_{\mu}(\mathbf{x};q) = A^{(3)}_{(3,2,2,1)}(\mathbf{x};q)$.

Let μ be k-bounded and let λ' be its k-conjugate. (Recall that, by definition, this means $\mu \xrightarrow{\alpha/\beta} \lambda$, where α is a (k + 1)-core and $\beta \subseteq \alpha$ is the set of boxes with hook-length > k + 1.) Then we have

 $A^{(k)}_{\mu}(\mathbf{x};q) = \operatorname{ch}(\mathcal{M}_{\mu,\lambda}).$

Let μ be k-bounded and let λ' be its k-conjugate. (Recall that, by definition, this means $\mu \xrightarrow{\alpha/\beta} \lambda$, where α is a (k + 1)-core and $\beta \subseteq \alpha$ is the set of boxes with hook-length > k + 1.) Then we have

$$A^{(k)}_{\mu}(\mathbf{x};q) = \mathsf{ch}(\mathcal{M}_{\mu,\lambda}).$$

The *k*-atoms are defined combinatorially, as generating functions for tableaux admitting certain catabolizabilities. (The original definition also involves "rolling," but Chen's 1-rolling conjecture implies a reformulation in terms of catabolizability conditions only.)

Let μ be k-bounded and let λ' be its k-conjugate. (Recall that, by definition, this means $\mu \xrightarrow{\alpha/\beta} \lambda$, where α is a (k + 1)-core and $\beta \subseteq \alpha$ is the set of boxes with hook-length > k + 1.) Then we have

$$A^{(k)}_{\mu}(\mathbf{x};q) = \mathsf{ch}(\mathcal{M}_{\mu,\lambda}).$$

The *k*-atoms are defined combinatorially, as generating functions for tableaux admitting certain catabolizabilities. (The original definition also involves "rolling," but Chen's 1-rolling conjecture implies a reformulation in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module $\mathcal{M}_{\mu,\lambda}$ has graded character matching that of $H^0(G \times_B \mathfrak{j}, \mathcal{L}_{\mu})$ for a special choice of \mathfrak{j} .

17 / 23

Let μ be k-bounded and let λ' be its k-conjugate. (Recall that, by definition, this means $\mu \xrightarrow{\alpha/\beta} \lambda$, where α is a (k + 1)-core and $\beta \subseteq \alpha$ is the set of boxes with hook-length > k + 1.) Then we have

$$A^{(k)}_{\mu}(\mathbf{x};q) = \mathsf{ch}(\mathcal{M}_{\mu,\lambda}).$$

The *k*-atoms are defined combinatorially, as generating functions for tableaux admitting certain catabolizabilities. (The original definition also involves "rolling," but Chen's 1-rolling conjecture implies a reformulation in terms of catabolizability conditions only.)

In fact, we conjecture that every Chen module $\mathcal{M}_{\mu,\lambda}$ has graded character matching that of $H^0(G \times_B \mathfrak{j}, \mathcal{L}_{\mu})$ for a special choice of \mathfrak{j} .

If so, then as we have seen, we can conjecturally express this character both as a generating function for catabolizable tableaux, and by an explicit raising operator formula.

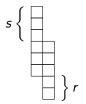
3

17 / 23

Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

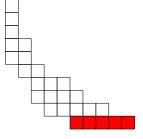
We break ties by matching the highest available row.

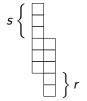


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

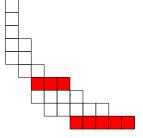


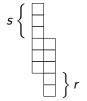


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

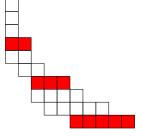


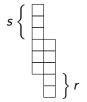


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

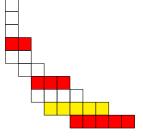


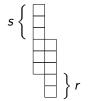


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

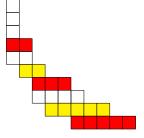


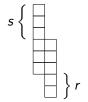


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

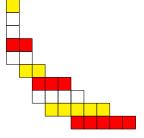


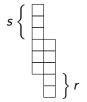


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

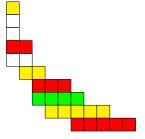


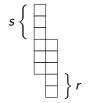


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

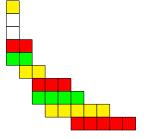


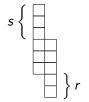


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

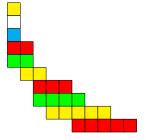


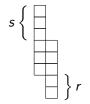


Chen's modules and the flag variety

Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.

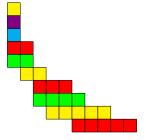


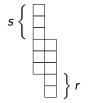


Chen's modules and the flag variety

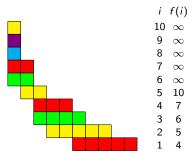
Consecutive columns in a skew-linking shape θ always have $r \leq s$, with r and s as shown at right. Hence we can match the beginning of each row to the end of some higher row.

We break ties by matching the highest available row.



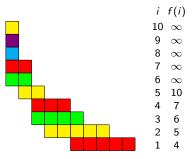


Let f(i) index the row matched to the *i*-th row.

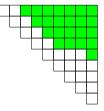


э

Let f(i) index the row matched to the *i*-th row.



Then define $\mathfrak{j}(\theta) = \langle e_{ij} \mid j \geq f(i) \rangle$ (for this example, in \mathfrak{gl}_{10}).



Haiman & Chen (U.C. Berkeley)

Conjecture (L-C. Chen)

Suppose $\mu \xrightarrow{\theta} \lambda$. Under the Frobenius map $\chi^{\lambda} \mapsto s_{\lambda}(\mathbf{x})$, the graded S_n character of $\mathcal{M}_{\mu,\lambda}$ is given by the formula

$$\sum_{\lambda} \sum_{\substack{T \in SSYT(\lambda,\mu) \\ T \text{ is } j(\theta)\text{-catabolizable}}} q^{c(T)} s_{\lambda}(\mathbf{x}),$$

which we also conjecture is the graded GL_m character of $H^0(G \times_B \mathfrak{j}(\theta), \mathcal{L}_{\mu})$.

In particular, we obtain an explicit raising operator formula for the k-atoms $A_{\mu}^{(k)}(\mathbf{x};q)$.

Conjecture (L-C. Chen)

Suppose $\mu \xrightarrow{\theta} \lambda$. Under the Frobenius map $\chi^{\lambda} \mapsto s_{\lambda}(\mathbf{x})$, the graded S_n character of $\mathcal{M}_{\mu,\lambda}$ is given by the formula

$$\sum_{\lambda} \sum_{\substack{T \in SSYT(\lambda,\mu) \\ T \text{ is } j(\theta)\text{-catabolizable}}} q^{c(T)} s_{\lambda}(\mathbf{x}),$$

which we also conjecture is the graded GL_m character of $H^0(G \times_B \mathfrak{j}(\theta), \mathcal{L}_{\mu})$.

In particular, we obtain an explicit raising operator formula for the k-atoms $A_{\mu}^{(k)}(\mathbf{x};q)$.

Remark: In the *k*-atom case, the constraint that T be $j(\theta)$ -catabolizable is a priori stronger than the catabolizability constraint in the original definition by Lascoux, Lapointe and Morse. But it appears to pick out the same set of tableaux.

Haiman & Chen (U.C. Berkeley)

20 / 23

Define $\mathcal{N}_{\mu,j} = H^0(G \times_B j, \mathcal{L}_{\mu})$. We expect the identity of characters conjectured on the previous slide to reflect a simple relationship between $\mathcal{M}_{\mu,\lambda}$ and $\mathcal{N}_{\mu,j(\theta)}$.

Define $\mathcal{N}_{\mu,j} = H^0(G \times_B j, \mathcal{L}_{\mu})$. We expect the identity of characters conjectured on the previous slide to reflect a simple relationship between $\mathcal{M}_{\mu,\lambda}$ and $\mathcal{N}_{\mu,j(\theta)}$.

Take m = n. Since $\mathcal{N}_{\mu,j(\theta)}$ is a GL_n -equivariant $\mathbb{C}[\mathfrak{gl}_n]$ -module, its 0-weight space^{*} is an S_n -equivariant $\mathbb{C}[y_1, \ldots, y_n]$ -module.

[*for experts: we mean the 0-weight space with respect to SL_n of the polynomial part of this GL_n -module.]

Define $\mathcal{N}_{\mu,j} = H^0(G \times_B j, \mathcal{L}_{\mu})$. We expect the identity of characters conjectured on the previous slide to reflect a simple relationship between $\mathcal{M}_{\mu,\lambda}$ and $\mathcal{N}_{\mu,j(\theta)}$.

Take m = n. Since $\mathcal{N}_{\mu,j(\theta)}$ is a GL_n -equivariant $\mathbb{C}[\mathfrak{gl}_n]$ -module, its 0-weight space^{*} is an S_n -equivariant $\mathbb{C}[y_1, \ldots, y_n]$ -module.

Conjecture

With the preceding definitions, the 0-weight space of $\mathcal{N}_{\mu,j(\theta)}$ is isomorphic to $\mathcal{M}_{\mu,\lambda}$.

[*for experts: we mean the 0-weight space with respect to SL_n of the polynomial part of this GL_n -module.]

For fun, we'll finish by listing some of the "known" ways to compute $A_{\mu}^{(k)}(\mathbf{x}; q)$. To the best of my knowldege, no two of these have yet been proven equivalent.

(More is known when q = 1, but I won't discuss that here.)

 Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints

- Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints
- Chen's variant, picking out supposedly the same set of tableaux with different catabolizability constraints

- Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints
- Othen's variant, picking out supposedly the same set of tableaux with different catabolizability constraints
- Construction using symmetric function creation and filtering operators (Lapointe, Morse)

- Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints
- Othen's variant, picking out supposedly the same set of tableaux with different catabolizability constraints
- Construction using symmetric function creation and filtering operators (Lapointe, Morse)
- Graded character of $\mathcal{M}_{\mu,\lambda}$

- Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints
- Othen's variant, picking out supposedly the same set of tableaux with different catabolizability constraints
- Construction using symmetric function creation and filtering operators (Lapointe, Morse)
- Graded character of $\mathcal{M}_{\mu,\lambda}$
- **5** Graded character of $\mathcal{N}_{\mu,j(\theta)}$

- Original definition (Lascoux, Lapointe, Morse) as a generating function for tableaux satisfying catabolizability and rolling constraints
- Othen's variant, picking out supposedly the same set of tableaux with different catabolizability constraints
- Construction using symmetric function creation and filtering operators (Lapointe, Morse)
- Graded character of $\mathcal{M}_{\mu,\lambda}$
- Graded character of $\mathcal{N}_{\mu,j(\theta)}$
- Saising operator formula for the preceding